Production of Sorbitol via Catalytic Transfer Hydrogenation of Glucose
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Catalytic Tests
2.3. Analysis of Products
3. Results and Discussion
3.1. Influence of Sacrificing Alcohol
3.2. Influence of the Reaction Temperature and Catalyst Loading
3.3. Influence of Catalyst Doping Agents
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Murillo Leo, I.; López Granados, M.; Fierro, J.L.G.; Mariscal, R. Selective conversion of sorbitol to glycols and stability of nickel–ruthenium supported on calcium hydroxide catalysts. Appl. Catal. B Environ. 2016, 185, 141–149. [Google Scholar] [CrossRef]
- Romero, A.; Alonso, E.; Sastre, Á.; Nieto-Márquez, A. Conversion of biomass into sorbitol: Cellulose hydrolysis on MCM-48 and d-Glucose hydrogenation on Ru/MCM-48. Microporous Mesoporous Mater. 2016, 224, 1–8. [Google Scholar] [CrossRef]
- Kumar, P.; Barrett, D.M.; Delwiche, M.J.; Stroeve, P. Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production. Ind. Eng. Chem. Res. 2009, 48, 3713–3729. [Google Scholar] [CrossRef]
- Patil, C.R.; Rode, C.V. Synthesis of diesel additives from fructose over PWA/SBA-15 catalyst. Fuel 2018, 217, 38–44. [Google Scholar] [CrossRef]
- Robinson, J.M.; Wadle, A.M.; Reno, M.D.; Kidd, R.; Barrett Hinsz, S.R.; Urquieta, J. Solvent- and Microwave-Assisted Dehydrations of Polyols to Anhydro and Dianhydro Polyols. Energy Fuels 2015, 29, 6529–6535. [Google Scholar] [CrossRef]
- Zada, B.; Chen, M.; Chen, C.; Yan, L.; Xu, Q.; Li, W.; Guo, Q.; Fu, Y. Recent advances in catalytic production of sugar alcohols and their applications. Sci. China Chem. 2017, 60, 853–869. [Google Scholar] [CrossRef]
- Zhang, J.; Li, J.B.; Wu, S.B.; Liu, Y. Advances in the Catalytic Production and Utilization of Sorbitol. Ind. Eng. Chem. Res. 2013, 52, 11799–11815. [Google Scholar] [CrossRef]
- Bozell, J.J.; Petersen, G.R. Technology development for the production of biobased products from biorefinery carbohydrates—The US Department of Energy’s “Top 10” revisited. Green Chem. 2010, 12, 539–554. [Google Scholar] [CrossRef]
- Fukuoka, A.; Dhepe, P.L. Catalytic Conversion of Cellulose into Sugar Alcohols. Angew. Chem. Int. Ed. 2006, 45, 5161–5163. [Google Scholar] [CrossRef]
- Ji, N.; Zhang, T.; Zheng, M.; Wang, A.; Wang, H.; Wang, X.; Chen, J.G. Direct Catalytic Conversion of Cellulose into Ethylene Glycol Using Nickel-Promoted Tungsten Carbide Catalysts. Angew. Chem. Int. Ed. 2008, 47, 8510–8513. [Google Scholar] [CrossRef]
- Van de Vyver, S.; Geboers, J.; Dusselier, M.; Schepers, H.; Vosch, T.; Zhang, L.; Van Tendeloo, G.; Jacobs, P.A.; Sels, B.F. Selective Bifunctional Catalytic Conversion of Cellulose over Reshaped Ni Particles at the Tip of Carbon Nanofibers. ChemSusChem 2010, 3, 698–701. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Rai, A.; Yadav, R.; Sinha, A.K. Glucose hydrogenation to sorbitol over unsupported mesoporous Ni/NiO catalyst. Mol. Catal. 2018, 451, 186–191. [Google Scholar] [CrossRef]
- Hausoul, P.J.C.; Beine, A.K.; Neghadar, L.; Palkovits, R. Kinetics study of the Ru/C-catalysed hydrogenolysis of polyols—Insight into the interactions with the metal surface. Catal. Sci. Technol. 2017, 7, 56–63. [Google Scholar] [CrossRef]
- Li, J.; Soares, H.S.; Moulijn, J.A.; Makkee, M. Simultaneous hydrolysis and hydrogenation of cellobiose to sorbitol in molten salt hydrate media. Catal. Sci. Technol. 2013, 3, 1565–1572. [Google Scholar] [CrossRef] [Green Version]
- Hoffer, B.W.; Crezee, E.; Mooijman, P.R.M.; van Langeveld, A.D.; Kapteijn, F.; Moulijn, J.A. Carbon supported Ru catalysts as promising alternative for Raney-type Ni in the selective hydrogenation of d-glucose. Catal. Today 2003, 79–80, 35–41. [Google Scholar] [CrossRef]
- van Gorp, K.; Boerman, E.; Cavenaghi, C.V.; Berben, P.H. Catalytic hydrogenation of fine chemicals: Sorbitol production. Catal. Today 1999, 52, 349–361. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Y.; Wu, S. Efficient Conversion of D-Glucose into D-Sorbitol over Carbonized Cassava Dregs-Supported Ruthenium Nanoparticles Catalyst. BioResources 2018, 13, 1278–1288. [Google Scholar] [CrossRef]
- Ribeiro, L.S.; Órfão, J.J.; Pereira, M.F.R. Comparative study of different catalysts for the direct conversion of cellulose to sorbitol. Green Process. Synth. 2015, 4, 71–78. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, A.; Sato, O.; Mimura, N.; Shirai, M. Catalytic production of sugar alcohols from lignocellulosic biomass. Catal. Today 2016, 265, 199–202. [Google Scholar] [CrossRef]
- Zhang, X.; Durndell, L.J.; Isaacs, M.A.; Parlett, C.M.A.; Lee, A.F.; Wilson, K. Platinum-Catalyzed Aqueous-Phase Hydrogenation of d-Glucose to d-Sorbitol. ACS Catal. 2016, 6, 7409–7417. [Google Scholar] [CrossRef] [Green Version]
- Aho, A.; Roggan, S.; Eränen, K.; Salmi, T.; Murzin, D.Y. Continuous hydrogenation of glucose with ruthenium on carbon nanotube catalysts. Catal. Sci. Technol. 2015, 5, 953–959. [Google Scholar] [CrossRef]
- Gallezot, P.; Nicolaus, N.; Flèche, G.; Fuertes, P.; Perrard, A. Glucose Hydrogenation on Ruthenium Catalysts in a Trickle-Bed Reactor. J. Catal. 1998, 180, 51–55. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, S.; Liu, Y.; Li, B. Hydrogenation of glucose over reduced Ni/Cu/Al hydrotalcite precursors. Catal. Commun. 2013, 35, 23–26. [Google Scholar] [CrossRef]
- Gericke, D.; Ott, D.; Matveeva, V.G.; Sulman, E.; Aho, A.; Murzin, D.Y.; Roggan, S.; Danilova, L.; Hessel, V.; Loeb, P.; et al. Green catalysis by nanoparticulate catalysts developed for flow processing? Case study of glucose hydrogenation. RSC Adv. 2015, 5, 15898–15908. [Google Scholar] [CrossRef]
- Bulushev, D.A.; Ross, J.R. Towards Sustainable Production of Formic Acid. ChemSusChem 2018, 11, 821–836. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, N.; Ghosh, S.K.; Bannerjee, S.; Aikat, K. Bioethanol production from agricultural wastes: An overview. Renew. Energy 2012, 37, 19–27. [Google Scholar] [CrossRef]
- Gilkey, M.J.; Xu, B. Heterogeneous Catalytic Transfer Hydrogenation as an Effective Pathway in Biomass Upgrading. ACS Catal. 2016, 6, 1420–1436. [Google Scholar] [CrossRef]
- Komanoya, T.; Kobayashi, H.; Hara, K.; Chun, W.-J.; Fukuoka, A. Simultaneous formation of sorbitol and gluconic acid from cellobiose using carbon-supported ruthenium catalysts. J. Energy Chem. 2013, 22, 290–295. [Google Scholar] [CrossRef]
- van Hengstum, A.J.; Kieboom, A.P.G.; van Bekkum, H. Catalytic Transfer Hydrogenation of Glucose-Fructose Syrups in Alkaline Solution. Starch Stärke 1984, 36, 317–320. [Google Scholar] [CrossRef]
- Scholz, D.; Aellig, C.; Mondelli, C.; Pérez-Ramírez, J. Continuous Transfer Hydrogenation of Sugars to Alditols with Bioderived Donors over Cu–Ni–Al Catalysts. ChemCatChem 2015, 7, 1551–1558. [Google Scholar] [CrossRef]
- García, B.; Moreno, J.; Iglesias, J.; Melero, J.A.; Morales, G. Transformation of Glucose into Sorbitol on Raney Nickel Catalysts in the Absence of Molecular Hydrogen: Sugar Disproportionation vs. Catalytic Hydrogen Transfer. Top. Catal. 2019, 62, 570–578. [Google Scholar] [CrossRef]
- Kobayashi, H.; Matsuhashi, H.; Komanoya, T.; Hara, K.; Fukuoka, A. Transfer hydrogenation of cellulose to sugar alcohols over supported ruthenium catalysts. Chem. Commun. 2011, 47, 2366–2368. [Google Scholar] [CrossRef] [Green Version]
- Chaloner, P.A.; Esteruelas, M.A.; Joo, F.; Oro, L. Homogeneous Hydrogenation; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1994; Volume 15. [Google Scholar]
- Jing, Q.; LÜ, X. Kinetics of Non-catalyzed Decomposition of Glucose in High-temperature Liquid Water. Chin. J. Chem. Eng. 2008, 16, 890–894. [Google Scholar] [CrossRef]
- Hoffer, B.W.; Crezee, E.; Devred, F.; Mooijman, P.R.M.; Sloof, W.G.; Kooyman, P.J.; van Langeveld, A.D.; Kapteijn, F.; Moulijn, J.A. The role of the active phase of Raney-type Ni catalysts in the selective hydrogenation of d-glucose to d-sorbitol. Appl. Catal. A Gen. 2003, 253, 437–452. [Google Scholar] [CrossRef]
- Cerino, P.J.; Fleche, G.; Gallezot, P.; Salome, J.P. Activity and Stability of Promoted Raney-Nickel Catalysts in Glucose Hydrogenation. In Studies in Surface Science and Catalysis; Guisnet, M., Barrault, J., Bouchoule, C., Duprez, D., Pérot, G., Maurel, R., Montassier, C., Eds.; Elsevier: Amsterdam, The Netherlands, 1991; Volume 59, pp. 231–236. [Google Scholar]
- Court, J.; Damon, J.P.; Masson, J.; Wierzchowski, P. Hydrogenation of Glucose with Bimetallic Catalysts (NiM) of Raney Type. In Studies in Surface Science and Catalysis; Guisnet, M., Barrault, J., Bouchoule, C., Duprez, D., Montassier, C., Pérot, G., Eds.; Elsevier: Amsterdam, The Netherlands, 1988; Volume 41, pp. 189–196. [Google Scholar]
- Delidovich, I.; Palkovits, R. Catalytic Isomerization of Biomass-Derived Aldoses: A Review. ChemSusChem 2016, 9, 547–561. [Google Scholar] [CrossRef]
- Caratzoulas, S.; Davis, M.E.; Gorte, R.J.; Gounder, R.; Lobo, R.F.; Nikolakis, V.; Sandler, S.I.; Snyder, M.A.; Tsapatsis, M.; Vlachos, D.G. Challenges of and Insights into Acid-Catalyzed Transformations of Sugars. J. Phys. Chem. C 2014, 118, 22815–22833. [Google Scholar] [CrossRef] [Green Version]
- Noller, H.; Lin, W.M. Effect of additives upon Raney-Nickel alloy catalysts. React. Kinet. Catal. Lett. 1982, 21, 479–483. [Google Scholar] [CrossRef]
Catalogue # | Ni (wt.%) | Al (wt.%) | Fe (wt.%) | Mo (wt.%) | Cr (wt.%) |
---|---|---|---|---|---|
A-5000 | 93.9 | 5.5 | --- | --- | --- |
A-7063 | 93.3 | 5.8 | --- | 1.1 | --- |
A-4000 | 85.6 | 8.6 | 2.3 | --- | 2.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García, B.; Moreno, J.; Morales, G.; Melero, J.A.; Iglesias, J. Production of Sorbitol via Catalytic Transfer Hydrogenation of Glucose. Appl. Sci. 2020, 10, 1843. https://doi.org/10.3390/app10051843
García B, Moreno J, Morales G, Melero JA, Iglesias J. Production of Sorbitol via Catalytic Transfer Hydrogenation of Glucose. Applied Sciences. 2020; 10(5):1843. https://doi.org/10.3390/app10051843
Chicago/Turabian StyleGarcía, Beatriz, Jovita Moreno, Gabriel Morales, Juan A. Melero, and Jose Iglesias. 2020. "Production of Sorbitol via Catalytic Transfer Hydrogenation of Glucose" Applied Sciences 10, no. 5: 1843. https://doi.org/10.3390/app10051843
APA StyleGarcía, B., Moreno, J., Morales, G., Melero, J. A., & Iglesias, J. (2020). Production of Sorbitol via Catalytic Transfer Hydrogenation of Glucose. Applied Sciences, 10(5), 1843. https://doi.org/10.3390/app10051843