An Overview on the Latest Nature-Inspired and Metaheuristics-Based Image Registration Algorithms
Abstract
:1. Introduction
2. Image Registration
- Two input images named scene and model , with and being image points.
- A registration transformation, named f. It corresponds to a geometric/parametric function that relates the coordinate systems of both images.
- A similarity metric function, named F. It is aimed at assessing the level of resemblance (i.e., the degree of overlapping) between the transformed scene image (i.e., ) and the model one.
- An optimization procedure. The optimizer regards a method seeking the optimal registration transformation (f). Likewise, it is necessary to provide a search space for the suitable representation of the IR solutions.
3. Nature-Inspired and Metaheuritcs-Based Image Registration
4. Revision of the State-of-the-Art
- Novelty: Does the contribution make use of a new NI&M-based optimization algorithm which has not been tested for the IR problem yet?
- Technology: Is parallel computing taken into account to improve optimization in any way?
- Continuity: Does the contribution provide a new advancement based on any previous research?
4.1. Santamaría et al.’s Memetic-Based Proposal
4.2. Queirolo et al.’s SA-Based Proposal
4.3. Rusu and Birmanns’ GA + TS-Based Proposal
4.4. Maia et al.’s EvSOM-Based Proposal
4.5. Das and Bhattacharya’s Proposal
4.6. Santamaría et al.’s GRASP&PR-Based Proposal
4.7. Yang et al.’s SDE-Based Proposal
4.8. Santamaría et al.’s MA + AIS-Based Proposal
4.9. Alderliesten et al.’s EDA-Based Proposal
4.10. Bermejo et al.’s BFOA-Based Proposal
4.11. Ma et al.’s OLDE-Based Proposal
4.12. De Falco et al.’s AIM-dDE-Based Proposal
4.13. Pirpinia et al.’s HybGA-Based Proposal
4.14. Bermejo et al.’s BFOA-Based Proposal
4.15. Yang et al.’s HLCSO-Based Proposal
4.16. Li et al.’s HFFO-Based Proposal
4.17. Qin et al.’s ABChDE-Based Proposal
4.18. De Falco et al.’s AsAMP-dDE-Based Proposal
4.19. Costin et al.’s BFOA-Based Proposal
4.20. Bouter et al.’s GOMEA-Based Proposal
4.21. Panda et al.’s ERBD-Based Proposal
4.22. Li et al.’s PDE-Based Proposal
4.23. Bermejo et al.’s CRO-SL-Based Proposal
4.24. Cocianu and Stan’s ES-APSO-Based Proposal
5. Analysis and Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Arun, K.; Huang, T.; Blostein, S. Least-squares fitting of two 3-D points sets. IEEE Trans. Pattern Anal. Mach. Intell. 1987, 9, 698–700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zitová, B.; Flusser, J. Image registration methods: A survey. Image Vis. Comput. 2003, 21, 977–1000. [Google Scholar] [CrossRef] [Green Version]
- Santamaría, J.; Cordón, O.; Damas, S. A comparative study of state-of-the-art evolutionary image registration methods for 3D modeling. Comput. Vis. Image Underst. 2011, 115, 1340–1354. [Google Scholar] [CrossRef]
- Diez, Y.; Roure, F.; Llado, X.; Salvi, J. A Qualitative Review on 3D Coarse Registration Methods. ACM Comput. Surv. 2015, 47, 1–36. [Google Scholar] [CrossRef]
- Besl, P.J.; McKay, N.D. A method for registration of 3D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256. [Google Scholar] [CrossRef]
- Liu, Y. Improving ICP with easy implementation for free form surface matching. Pattern Recogn. 2004, 37, 211–226. [Google Scholar] [CrossRef] [Green Version]
- Zadeh, L. Soft Computing and Fuzzy Logic. IEEE Softw. 1994, 11, 48–56. [Google Scholar] [CrossRef]
- De Jong, K. Evolutionary Computation; The MIT Press: Cambridge, MA, USA, 2002. [Google Scholar]
- Glover, F.; Laguna, M.; Martí, R. Scatter Search. In Advances in Evolutionary Computation: Theory and Applications; Ghosh, A., Tsutsui, S., Eds.; Springer: New York, NY, USA, 2003; pp. 519–537. [Google Scholar]
- Nachtegael, M.; Kerre, E.; Damas, S.; Van der Weken, D. Special issue on recent advances in soft computing in image processing. Int. J. Approx. Reason. 2009, 50, 1–2. [Google Scholar] [CrossRef]
- Olague, G. Evolutionary Computer Vision; Springer: Berlin, Germany, 2016. [Google Scholar]
- Rundo, L.; Militello, C.; Vitabile, S.; Russo, G.; Sala, E.; Gilardi, M. A Survey on Nature-Inspired Medical Image Analysis: A Step Further in Biomedical Data Integration. Fundam. Inform. 2020, 171, 345–365. [Google Scholar] [CrossRef]
- Rusinkiewicz, S.; Levoy, M. Efficient variants of the ICP algorithm. In Proceedings of the Third International Conference on 3D Digital Imaging and Modeling (3DIM’01), Quebec City, QC, Canada, 28 May–1 June 2001; pp. 145–152. [Google Scholar]
- Godin, G.; Hebert, P.; Masuda, T.; Taubin, G. Special issue on New Advances in 3D Imaging and Modeling. Comput. Vis. Image Underst. 2009, 113, 1105–1180. [Google Scholar] [CrossRef]
- Falco, I.D.; Scafuri, U.; Tarantino, E.; Cioppa, A.D.; Yetongnon, K.; Dipanda, A.; DePietro, R.; Gallo, L. Fast Range Image Registration by an Asynchronous Adaptive Distributed Differential Evolution. In Proceedings of the 2016 12TH International Conference on Signa-Image Technology & Internet-Based Systems (SITIS), Naples, Italy, 28 November–1 December 2016; pp. 643–651. [Google Scholar]
- Silva, L.; Bellon, O.R.P.; Boyer, K.L. Robust Range Image Registration Using Genetic Algorithms and the Surface Interpetenetration Measure; World Scientific: Singapore, 2005. [Google Scholar]
- Yamany, S.M.; Ahmed, M.N.; Farag, A.A. A new genetic-based technique for matching 3D curves and surfaces. Pattern Recogn. 1999, 32, 1817–1820. [Google Scholar] [CrossRef]
- Jong, K.A.D. Evolutionary Computation: A Unified Approach; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Gendreau, M.; Potvin, J.Y. Handbook of Metaheuristics; Springer Publishing Company, Incorporated: New York, NY, USA, 2010. [Google Scholar]
- Eberhart, R.; Shi, Y.; Kennedy, J. Swarm Intelligence; Morgan Kaufmann: San Francisco, CA, USA, 2001. [Google Scholar]
- Simon, D. Evolutionary Optimization Algorithms; Wiley: Hoboken, NJ, USA, 2013. [Google Scholar]
- Schwefel, H. Evolution and Optimum Seeking: The Sixth Generation; John Wiley & Sons, Inc.: New York, NY, USA, 1993. [Google Scholar]
- Marti, R.; Panos, P.; Resende, M.G.C. Handbook of Heuristics; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Price, K. An introduction to differential evolution. In New Ideas in Optimization; Corne, D., Dorigo, M., Glover, F., Eds.; McGraw-Hill: New York, NY, USA, 1999; pp. 79–108. [Google Scholar]
- Storn, R. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Ong, Y.; Lim, M.H.; Chen, X. Memetic Computation—Past, Present & Future. IEEE Comput. Intell. Mag. 2010, 5, 24–31. [Google Scholar]
- Clerc, M. Particle Swarm Optimization; ISTE Publishing Company: London, UK, 2006. [Google Scholar]
- Tangherloni, A.; Spolaor, S.; Cazzaniga, P.; Besozzi, D.; Rundo, L.; Mauri, G.; Nobile, M. Biochemical parameter estimation vs. benchmark functions: A comparative study of optimization performance and representation design. Appl. Soft Comput. 2019, 81, 105494. [Google Scholar] [CrossRef]
- Lozano, J.A.; Larrañaga, P.; Inza, I.; Bengotxea, E. (Eds.) Towards a New Evolutionary Computation: Advances on Estimation of Distribution Algorithms; Springer: Heidelberg, Germany; New York, NY, USA, 2006. [Google Scholar]
- Díaz-Pernil, D.; Gutiérrez-Naranjo, M.; Peng, H. Membrane computing and image processing: A short survey. J. Membr. Comput. 2019, 1, 58–73. [Google Scholar] [CrossRef]
- Bhattacharjee, K.; Naskar, N.; Roy, S.; Das, S. A survey of cellular automata: Types, dynamics, non-uniformity and applications. Nat. Comput. 2018, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Passino, K. Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst. Mag. 2002, 3, 52–67. [Google Scholar]
- Akay, B.; Karaboga, D. A survey on the applications of artificial bee colony in signal, image, and video processing. Signal Image Video Process. 2015, 9, 967–990. [Google Scholar] [CrossRef]
- Fitzpatrick, J.; Grefenstette, J.; Gucht, D. Image registration by genetic search. In Proceedings of the IEEE Southeast Conference, Louisville, KY, USA, 8–11 April 1984; pp. 460–464. [Google Scholar]
- Damas, S.; Cordón, O.; Santamaría, J. Medical Image Registration Using Evolutionary Computation: A Survey. IEEE Comput. Intell. Mag. 2011, 6, 26–42. [Google Scholar] [CrossRef]
- Santamaría, J.; Cordón, O.; Damas, S.; García-Torres, J.; Quirin, A. Performance evaluation of memetic approaches in 3D reconstruction of forensic objects. Soft Comput. 2009, 13, 883–904. [Google Scholar] [CrossRef]
- Queirolo, C.; Silva, L.; Bellon, O.; Pamplona, M. 3D Face Recognition using Simulated Annealing and the Surface Interpenetration Measure. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 206–219. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.; Bellon, O.R.P.; Boyer, K.L. Precision range image registration using a robust surface interpenetration measure and enhanced genetic algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 762–776. [Google Scholar] [CrossRef] [PubMed]
- Rusu, M.; Birmanns, S. Evolutionary tabu search strategies for the simultaneous registration of multiple atomic structures in cryo-EM reconstructions. J. Struct. Biol. 2010, 170, 164–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maia, J.; Barreto, G.; Coelho, A. Image Registration by the Extended Evolutionary Self-Organizing Map. In Proceedings of the ESANN 2010—European Symposium on Artificial Neural Networks, Bruges, Belgium, 28–30 April 2010; pp. 523–528. [Google Scholar]
- Maia, J.; Coelho, A.; Barreto, G. Directly Optimizing Topology-Preserving Maps with Evolutionary Algorithms: A Comparative Analysis. In Proceedings of the International Conference on Neural Information Processing, Bangkok, Thailand, 1–5 December 2009; Springer: Berlin, Germany, 2009; pp. 1180–1187. [Google Scholar]
- Das, A.; Bhattacharya, M. Affine-based registration of CT and MR modality images of human brain using multiresolution approaches: Compaative study on genetic algorithm and particle swarm optimization. Neural. Comput. Appl. 2011, 20, 223–237. [Google Scholar] [CrossRef]
- Santamaría, J.; Cordón, O.; Damas, S.; Martí, R.; Palma, R.J. GRASP and path relinking hybridizations for the point matching-based image registration problem. J. Heuristics 2012, 18, 169–192. [Google Scholar] [CrossRef]
- Resende, M.C.; Martí, R.; Gallego, M.; Duarte, A. GRASP and Path Relinking for the MAX-MIN Diversity Problem. Comput. Oper. Res. 2010, 37, 498–508. [Google Scholar] [CrossRef]
- Kwan, R.K.S.; Evans, A.C.; Pike, G.B. MRI simulation-based evaluation of image-processing and classification methods. IEEE Trans. Med. Imaging 1999, 18, 1085–1097. [Google Scholar] [CrossRef]
- Marai, G.E.; Laidlaw, D.H.; Crisco, J.J. Super-resolution registration using tissue-classified distance fields. IEEE Trans. Med. Imaging 2006, 25, 177–187. [Google Scholar] [CrossRef]
- Yang, Z.; Vegh, V.; Reutens, D.; Chen, Q.; Li, Y.; Zhang, T.; Wang, L. A Fast Multi-resolution Differential Evolution Method for Multimodal Image Registration. In Proceedings of the 2012 5TH International Congress on Image and Signal Proccessing (CISP), Chongqing, China, 16–18 October 2012; pp. 804–809. [Google Scholar]
- Brest, J.; Greiner, S.; Boskovic, B.; Mernik, M.; Zumer, V. Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems. IEEE Trans. Evolut. Comput. 2006, 10, 646–657. [Google Scholar] [CrossRef]
- Santamaría, J.; Damas, S.; Cordón, O.; Escamez, A. Self-Adaptive Evolution Toward New Parameter Free Image Registration Methods. IEEE Trans. Evolut. Comput. 2013, 17, 545–557. [Google Scholar] [CrossRef]
- Mladenović, N.; Hansen, P. Variable neighborhood search. Comput. Oper. Res. 1997, 24, 1097–1100. [Google Scholar] [CrossRef]
- Castro, E.D.; Timmis, J. Artificial Immune Systems: A New Computational Intelligence Approach; Springer: Berlin, Germany, 2002. [Google Scholar]
- Alderliesten, T.; Sonke, J.; Bosman, P.; Ourselin, S.; Haynor, D. Deformable image registration by multi-objective optimization using a dual-dynamic transformation model to account for large anatomical differences. In Proceedings of the SPIE Medical Imaging 2013: Image Processing, Lake Buena Vista, FL, USA, 13 March 2013; pp. 273–279. [Google Scholar]
- Bermejo, E.; Cordón, O.; Damas, S.; Santamaría, J. Quality time-of-flight range imaging for feature-based registration using bacterial foraging Quality time-of-flight range imaging for feature-based registration using bacterial foraging. Appl. Soft Comput. 2013, 13, 3178–3189. [Google Scholar] [CrossRef]
- Ma, W.; Fan, X.; Wu, Y.; Jiao, L. An Orthogonal Learning Differential Evolution Algorithm for Remote Sensing Image Registration. Math. Prob. Eng. 2014. [Google Scholar] [CrossRef]
- Falco, I.D.; Cioppa, A.D.; Maisto, D.; Scafuri, U.; Tarantino, E. Using an Adaptive Invasion-based Model for Fast Range Image Registration. In Proceedings of the GECCO’14—2014 Genetic and Evolutionary Computation Conference, Vancouver, BC, Canada, 12–16 July 2014; pp. 1095–1102. [Google Scholar]
- Pirpinia, K.; Alderliesten, T.; Sonke, J.; Bosman, M.V.H.P.; Silva, S. Diversifying Multi-Objective Gradient Techniques and their Role in Hybrid Multi-Objective Evolutionary Algorithms for Deformable Medical Image Registration. In Proceedings of the GECCO’15—2015 Genetic and Evolutionary Computation Conference, Madrid, Spain, 11–15 July 2015; pp. 1255–1262. [Google Scholar]
- Bermejo, E.; Cordon, O.; Damas, S.; Santamaría, J. A comparative study on the application of advanced bacterial foraging models to image registration. Inf. Sci. 2015, 295, 160–181. [Google Scholar] [CrossRef]
- Dasgupta, S.; Das, S.; Abraham, A.; Biswas, A. Adaptive computational chemotaxis in bacterial foraging optimization: an analysis. IEEE Trans. Evolut. Comput. 2009, 13, 919–941. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Ding, M.; Zhang, X.; Hou, W.; Zhong, C. Non-rigid multi-modal medical image registration by combining L-BFGS-B with cat swarm optimization. Inf. Sci. 2015, 316, 440–456. [Google Scholar] [CrossRef]
- Li, T.; Pan, Q.; Gao, L.; Li, W.; Li, P.; Shen, W.; Liu, X.; Yang, C.; Barthes, J.; Luo, J.; et al. Normal Histogram-based Fruit Fly Optimization Algorithm for Range Image Registration. In Proceedings of the IEEE 20th International Conference on Computer Supported Cooperative Work in Design (CSCWD), Nanchang, China, 4–6 May 2016; pp. 357–362. [Google Scholar]
- Qin, Y.; Hu, H.; Shi, Y.; Liu, Y.; Gao, H.; Chen, J.; Zhao, Q. An Artificial Bee Colony Algorithm Hybrid with Differential Evolution for Multi-temporal Image Registration. In Proceedings of the 35th Chinese Control Conference 2016, Chengdu, China, 27–29 July 2016; pp. 2734–2739. [Google Scholar]
- Costin, H.; Bejinariu, S.; Costin, D. Biomedical Image Registration by Means of Bacterial Foraging Paradigm. Int. J. Comput. Commun. Control 2016, 11, 331–347. [Google Scholar] [CrossRef] [Green Version]
- Bouter, A.; Alderliesten, T.; Bosman, P.; Styner, M.; Angelini, E. A novel model-based evolutionary algorithm for multi-objective deformable image registration with content mismatch and large deformations: benchmarking efficiency and quality. In Proceedings of the SPIE Medical Imaging 2017: Image Processing, Orlando, FL, USA, 24 February 2017; pp. 304–311. [Google Scholar]
- Panda, R.; Agrawal, S.; Sahoo, M.; Nayak, R. A novel evolutionary rigid body docking algorithm for medical image registration. Swarm Evol. Comput. 2017, 33, 108–118. [Google Scholar] [CrossRef]
- Li, T.; Pan, Q.; Gao, L.; Li, P. Differential evolution algorithm-based range image registration for free-form surface parts quality inspection. Swarm Evol. Comput. 2017, 36, 106–123. [Google Scholar] [CrossRef]
- Zhang, J.; Member, S.; Sanderson, A. JADE: Adaptive differential evolution with optional external archive. IEEE Trans. Evolut. Comput. 2009, 13, 1–14. [Google Scholar]
- Bermejo, E.; Chica, M.; Damas, S.; Salcedo-Sanz, S.; Cordón, O. Coral Reef Optimization with substrate layers for medical Image Registration. Swarm Evol. Comput. 2018, 42, 138–159. [Google Scholar] [CrossRef]
- Salcedo-Sanz, S.; Muñoz-Bulnes, J.; Vermeij, M. New coral reefs-based approaches for the model type selection problem: A novel method to predict a Nation’s future energy demand. Int. J. Bio-Inspired Comput. 2017, 10, 145–158. [Google Scholar] [CrossRef]
- Cocianu, C.; Stan, A. New Evolutionary-Based Techniques for Image Registration. Appl. Sci. 2019, 9, 176. [Google Scholar] [CrossRef] [Green Version]
- Yang, X. Nature-Inspired Optimization Algorithms; Elsevier Inc.: London, UK, 2014. [Google Scholar]
- Cordón, O.; Damas, S.; Santamaría, J. A CHC evolutionary algorithm for 3D image registration. In International Fuzzy Systems Association World Congress (IFSA’03); Lect. Notes Artif. Int. 2715; Bilgic, T., Baets, B.D., Bogazici, O., Eds.; Springer: Istambul, Turkey, 2003; pp. 404–411. [Google Scholar]
- Wachowiak, M.P.; Smolikova, R.; Zheng, Y.; Zurada, J.M.; El-Maghraby, A.S. An approach to multimodal biomedical image registration utilizing particle swarm optimization. IEEE Trans. Evolut. Comput. 2004, 8, 289–301. [Google Scholar] [CrossRef]
- Rundo, L.; TangherLoni, A.; Militello, C.; Gilardi, M.; Mauri, G. Multimodal Medical Image Registration Using Particle Swarm Optimization: A Review. Proceedings of 2016 IEEE Symposium Series on Computational Intelligence (SSCI), Athens, Greece, 6–9 December 2016. [Google Scholar]
- De Vos, B.; Berendsen, F.; Viergever, M.; Sokooti, H.; Staring, M.; Isgum, I. A deep learning framework for unsupervised affine and deformable image registration. Med. Image Anal. 2019, 52, 128–143. [Google Scholar] [CrossRef] [Green Version]
- Balakrishnan, G.; Zhao, A.; Sabuncu, M.; Guttag, J.; Dalca, A. VoxelMorph: A Learning Framework for Deformable Medical Image Registration. IEEE Trans. Med. Imaging 2019, 38, 1788–1800. [Google Scholar] [CrossRef] [Green Version]
Algorithm | Coding | Search | NI&M | Multi- | Tuning | Application | Image | Arch. | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ref. | Year | R | B | I | P | M | Technique | Object. | S | M | Field | mod. | S | P |
[36] | 2009 | 🗸 | 🗸 | MEM | 🗸 | Modeling | 3D | 🗸 | ||||||
[37] | 2009 | 🗸 | 🗸 | SA | 🗸 | Face Recognition | 3D | 🗸 | ||||||
[39] | 2010 | 🗸 | 🗸 | GA+TS | 🗸 | Molecular Modeling | 3D | 🗸 | ||||||
[40] | 2010 | 🗸 | 🗸 | EvSOM | 🗸 | Medical Imaging | 2D | 🗸 | ||||||
[42] | 2011 | 🗸 | 🗸 | GA & PSO | 🗸 | Medical Imaging | 2D | 🗸 | ||||||
[43] | 2012 | 🗸 | GRASP+PR | 🗸 | Medical Imaging | 3D | 🗸 | |||||||
[47] | 2012 | 🗸 | 🗸 | SDE | 🗸 | Medical Imaging | 2D | 🗸 | ||||||
[49] | 2013 | 🗸 | 🗸 | MA+AIS | 🗸 | Modeling | 3D | 🗸 | ||||||
[52] | 2013 | 🗸 | 🗸 | EDA | 🗸 | 🗸 | Medical Imaging | 2D | 🗸 | |||||
[53] | 2013 | 🗸 | 🗸 | BFOA | 🗸 | Modeling | 3D | 🗸 | ||||||
[54] | 2014 | 🗸 | 🗸 | OLDE | 🗸 | Remote Sensing | 2D | 🗸 | ||||||
[55] | 2014 | 🗸 | 🗸 | AIM-dDE | 🗸 | Modeling | 3D | 🗸 | ||||||
[56] | 2015 | 🗸 | 🗸 | HybGA | 🗸 | 🗸 | Medical Imaging | 2D | 🗸 | |||||
[57] | 2015 | 🗸 | 🗸 | BFOA | 🗸 | Mod. & Med. Imag. | 3D | 🗸 | ||||||
[59] | 2015 | 🗸 | 🗸 | HLCSO | 🗸 | Medical Imaging | 3D | 🗸 | ||||||
[60] | 2016 | 🗸 | 🗸 | HFFO | 🗸 | Modeling | 3D | 🗸 | ||||||
[61] | 2016 | 🗸 | 🗸 | ABChDE | 🗸 | Recognition | 2D | 🗸 | ||||||
[15] | 2016 | 🗸 | 🗸 | AsAMP-dDE | 🗸 | Modeling | 3D | 🗸 | ||||||
[62] | 2016 | 🗸 | 🗸 | BFOA | 🗸 | Medical Imaging | 2D | 🗸 | ||||||
[63] | 2017 | 🗸 | 🗸 | GOM-EA | 🗸 | 🗸 | Medical Imaging | 2D | 🗸 | |||||
[64] | 2017 | 🗸 | 🗸 | ERBD | 🗸 | Medical Imaging | 2D | 🗸 | ||||||
[65] | 2017 | 🗸 | 🗸 | PDE | 🗸 | Recognition | 3D | 🗸 | ||||||
[67] | 2018 | 🗸 | 🗸 | 🗸 | CRO-SL | 🗸 | Medical Imaging | 3D | 🗸 | |||||
[69] | 2019 | 🗸 | 🗸 | ES-APSO | 🗸 | Recognition | 2D | 🗸 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santamaría, J.; Rivero-Cejudo, M.L.; Martos-Fernández, M.A.; Roca, F. An Overview on the Latest Nature-Inspired and Metaheuristics-Based Image Registration Algorithms. Appl. Sci. 2020, 10, 1928. https://doi.org/10.3390/app10061928
Santamaría J, Rivero-Cejudo ML, Martos-Fernández MA, Roca F. An Overview on the Latest Nature-Inspired and Metaheuristics-Based Image Registration Algorithms. Applied Sciences. 2020; 10(6):1928. https://doi.org/10.3390/app10061928
Chicago/Turabian StyleSantamaría, J., M. L. Rivero-Cejudo, M. A. Martos-Fernández, and F. Roca. 2020. "An Overview on the Latest Nature-Inspired and Metaheuristics-Based Image Registration Algorithms" Applied Sciences 10, no. 6: 1928. https://doi.org/10.3390/app10061928
APA StyleSantamaría, J., Rivero-Cejudo, M. L., Martos-Fernández, M. A., & Roca, F. (2020). An Overview on the Latest Nature-Inspired and Metaheuristics-Based Image Registration Algorithms. Applied Sciences, 10(6), 1928. https://doi.org/10.3390/app10061928