Effect of Molecular Weight of Tilapia (Oreochromis Niloticus) Skin Collagen Peptide Fractions on Zinc-Chelating Capacity and Bioaccessibility of the Zinc-Peptide Fractions Complexes in Vitro Digestion
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Determination of Molecular Weight of Peptide Fractions
2.3. Preparation of the Peptide Fractions-Zinc Complexes
2.4. Determination of Zinc Chelating Ability
2.5. Determination of Zeta Potential of Peptide
2.6. Amino Acid Composition Analysis
2.7. Fourier Transform Infrared (FTIR) Spectroscopy
2.8. Zinc Solubility in Various pH Values
2.9. Determination of Zinc Dialyzability and Stability Under Simulated Gastrointestinal Digestion
2.10. Statistical Analysis
3. Results and Discussion
3.1. The Molecular Weight Distribution of Peptide Fractions
3.2. Zinc-Chelating Capacity of the Peptide
3.3. Zeta Potential of the Peptide Fractions
3.4. Amino Acid Composition
3.5. Characterization of the Zinc-Peptide Fractions Interactions by FTIR
3.6. Zinc Solubility at Various pH Values
3.7. Gastric Stability and Zinc Dialyzability
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nriagu, J. Zinc deficiency in human health. Encycl. Environ. Health 2011, 789–800. [Google Scholar]
- Udechukwu, M.C.; Collins, S.A.; Udenigwe, C.C. Prospects of enhancing dietary zinc bioavailability with food-derived zinc-chelating peptides. Food Funct. 2016, 7, 4137–4144. [Google Scholar] [CrossRef] [PubMed]
- Hambidge, M. Human zinc deficiency. J. Nutr. 2000, 130, 1344–1349. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.S. Discovery of human zinc deficiency: 50 years later. J. Trace Elem. Med. Biol. 2012, 26, 66–69. [Google Scholar] [CrossRef] [PubMed]
- Bonaventura, P.; Benedetti, G.; Albarède, F.; Miossec, P. Zinc and its role in immunity and inflammation. Autoimmun. Rev. 2015, 14, 277–285. [Google Scholar] [CrossRef]
- Akbar, B.; Niloufar, N.; Abolfazl, M.; Lofollah, S.; Ali, K.Q.; Soheyla, V. Evaluation and comparison of zinc absorption level from 2-alkyle 3-hydroxy pyranonzinc complexes and zinc sulfate in rat in vivo. Adv. Biomed. Res. 2013, 2, 77–80. [Google Scholar] [CrossRef]
- Guo, L.; Harnedy, P.A.; Li, B.; Hou, H.; Zhang, Z.; Zhao, X. Food protein-derived chelating peptides: Biofunctional ingredients for dietary mineral bioavailability enhancement. Trends Food Sci. Technol. 2014, 37, 92–105. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, J.; Tong, P.; Mao, X. Zinc-binding capacity of yak casein hydrolysate and the zinc-releasing characteristics of casein hydrolysate-zinc complexes. J. Dairy Sci. 2011, 94, 2731–2740. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Liu, Z.; Huang, W.; Zhao, Y.; Dong, S.; Zeng, M. Purification and characterization of a zinc-binding peptide from oyster protein hydrolysate. J. Funct. Foods 2013, 5, 689–697. [Google Scholar] [CrossRef]
- Udechukwu, M.C.; Downey, B.; Udenigwe, C.C. Influence of structural and surface properties of whey-derived peptides on zinc-chelating capacity, and in vitro gastric stability and bioaccessibility of the zinc-peptide complexes. Food Chem. 2018, 240, 1227–1232. [Google Scholar] [CrossRef]
- Guo, L.; Harnedy, P.A.; O’Keeffe, M.B.; Zhang, L.; Li, B.; Hou, H. Fractionation and identification of alaska pollock skin collagen-derived mineral chelating peptides. Food Chem. 2015, 173, 536–542. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Bao, X.L.; Yang, B.C.; Ren, C.G.; Guo, S.T. Effect of soluble soybean protein hydrolysate-calcium complexes on calcium uptake by Caco-2 cells. J. Food Sci. 2008, 73, 1750–3841. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, B.; Ao, J. Separation and identification of zinc-chelating peptides from sesame protein hydrolysate using IMAC-Zn2+ and LC–MS/MS. Food Chem. 2012, 134, 1231–1238. [Google Scholar] [CrossRef] [PubMed]
- Mei, F.-F.; Liu, J.-J.; Wu, J.-T.; Duan, Z.-W.; Meng, K.-K.; Chen, S.-J.; Shen, X.-R.; Xia, G.-H.; Zhao, M.-H. Collagen peptides isolated from salmo salar and tilapia nilotica skin accelerate wound healing by altering cutaneous microbiome colonization via upregulated NOD2 and BD14. J. Agric. Food Chem. 2020, 68, 1621–1633. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, F.; Liu, X.; Zhao, M. Particulate nanocomposite from oyster (Crassostrea rivularis) hydrolysates via zinc chelation improves zinc solubility and peptide activity. Food Chem. 2018, 258, 269–277. [Google Scholar] [CrossRef]
- Eckert, E.; Bamdad, F.; Chen, L. Metal solubility enhancing peptides derived from barley protein. Food Chem. 2014, 159, 498–506. [Google Scholar] [CrossRef]
- Pagán, J.; Ibarz, A.; Falguera, V.; Benítez, R. Enzymatic hydrolysis kinetics and nitrogen recovery in the protein hydrolysate production from pig bones. J. Food Eng. 2013, 119, 655–659. [Google Scholar] [CrossRef]
- Li, Z.-R.; Wang, B.; Chi, C.-F.; Gong, Y.-D.; Luo, H.-Y.; Ding, G.-F. Influence of average molecular weight on antioxidant and functional properties of cartilage collagen hydrolysates from Sphyrna lewini, Dasyatis akjei and Raja porosa. Food Res. Int. 2013, 51, 283–293. [Google Scholar] [CrossRef]
- Hera, E.; Gomez, M.; Rosell, C.M. Particle size distribution of rice flour affecting the starch enzymatic hydrolysis and hydration properties. Carbohydr. Polym. 2013, 98, 421–427. [Google Scholar] [CrossRef] [Green Version]
- Turgeon, S.L.; Gauthier, S.F.; Mollé, D.; Léonil, J. Interfacial properties of tryptic peptides of b-lactoglobulin. J. Agric. Food Chem. 1992, 40, 669–675. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Liu, X.; Huang, L.; Chen, Z.; Cheng, J. Influence of hydrolysis behaviour and microfluidisation on the functionality and structural properties of collagen hydrolysates. Food Chem. 2017, 227, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-L.; Li, X.-H.; Chen, Z.-J.; Yu, J.; Wang, F.-X.; Wang, J.-H. Characterization of structural and functional properties of fish protein hydrolysates from surimi processing by-products. Food Chem. 2014, 151, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Sun, N.; Cui, P.; Jin, Z.; Wu, H.; Wang, Y.; Lin, S. Contributions of molecular size, charge distribution, and specific amino acids to the iron-binding capacity of sea cucumber (Stichopus japonicus) ovum hydrolysates. Food Chem. 2017, 230, 627–636. [Google Scholar] [CrossRef] [PubMed]
- Elias, R.J.; Kellerby, S.S.; Decker, E.A. Antioxidant activity of proteins and peptides. Crit. Rev. Food Sci. Nutr. 2008, 48, 430–441. [Google Scholar] [CrossRef]
- Wang, X.; Li, K.; Yang, X.D.; Wang, L.L.; Shen, R.F. Complexation of Al(III) with reduced glutathione in acidic aqueous solutions. J. Inorg. Biochem. 2009, 103, 657–665. [Google Scholar] [CrossRef]
- Kozlowski, H.; Kowalik-Jankowska, T.; Jezowska-Bojczuk, M. Chemical and biological aspects of Cu2+ interactions with peptides and aminoglycosides. Coord. Chem. Rev. 2005, 249, 2323–2334. [Google Scholar] [CrossRef]
- Kozlowski, H.; Bal, W. Specific structure-stability relations in metallopeptides. Coord. Chem. Rev. 1999, 184, 319–346. [Google Scholar] [CrossRef]
- Torres-Fuentes, C.; Alaiz, M.; Vioque, J. Affinity purification and characterisation of chelating peptides from chickpea protein hydrolysates. Food Chem. 2011, 129, 485–490. [Google Scholar] [CrossRef]
- Reddy, P.; Radhika, M.; Manjula, P. Synthesis and characterization of mixed ligand complex of Zn (II) and Co (II) with amino acids: Relevance to zinc binding sites in zinc fingers. J. Chem. Sci. 2005, 117, 239–246. [Google Scholar] [CrossRef]
- Liao, W.; Guanghua, X.; Li, Y.; Shen, X.R.; Li, C. Comparison of characteristics and fibril-forming ability of skin collagen from barramundi (Lates calcarifer) and tilapia (Oreochromis niloticus). Int. J. Biol. Macromol. 2017, 107, 549–559. [Google Scholar] [CrossRef]
- Qingling, W.; Xiong, Y.L. Zinc-binding behavior of hemp protein hydrolysates: Soluble versus insoluble zinc-peptide complexes. J. Funct. Foods 2018, 49, 105–112. [Google Scholar]
- Van der Ven, C.; Muresan, S.; Gruppen, H.; de Bont, D.B.; Merck, K.B.; Voragen, A.G. FTIR spectra of whey and casein hydrolysates in relation to their functional properties. J. Agric. Food Chem. 2002, 50, 6943–6950. [Google Scholar] [CrossRef] [PubMed]
- Curley, D.; Kumosinski, T.; Unrah, J.; Farrell, H. Changes in the secondary structure of bovine casein by fourier transform infrared spectroscopy: Effects of calcium and temperature1. J. Dairy Sci. 1998, 81, 3154–3162. [Google Scholar] [CrossRef]
- Fang, Z.; Xu, L.; Lin, Y.; Cai, X.; Wang, S. The preservative potential of octopus scraps peptides−zinc chelate against staphylococcus aureus: Its fabrication, antibacterial activity and action mode. Food Control 2018, 98, 24–33. [Google Scholar] [CrossRef]
- Barth, A. Infrared spectroscopy of proteins. Biochim. Biophys. Acta Bioenerg. 2007, 1767, 1073–1101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miquel, E.; Farré, R. Effects and future trends of casein phosphopeptides on zinc bioavailability. Trends Food Sci. Technol. 2007, 18, 139–143. [Google Scholar] [CrossRef]
- Chen, M.; Li, B. The effect of molecular weights on the survivability of caseinderived antioxidant peptides after the simulated gastrointestinal digestion. Innov. Food Sci. Emerg. Technol. 2012, 16, 341–348. [Google Scholar] [CrossRef]
- Wang, C.; Li, B.; Wang, B.; Xie, N. Degradation and antioxidant activities of peptides and zinc–peptide complexes during in vitro gastrointestinal digestion. Food Chem. 2015, 173, 733–740. [Google Scholar] [CrossRef]
Molecular Weight Range | Percentage of Peak Area (%) | ||
---|---|---|---|
P1 | P2 | P3 | |
>3000 Da | 15.19 | 32.52 | 52.38 |
1000–3000 Da | 39.14 | 32.30 | 30.66 |
<1000 Da | 45.67 | 35.18 | 16.96 |
Average molecular weight (AMW)/Da | 1653 | 2745 | 4378 |
Amino Acid | P1 | P1-Zn | P2 | P2-Zn | P3 | P3-Zn |
---|---|---|---|---|---|---|
Glu | 7.76 | 7.80 | 7.82 | 7.63 | 7.91 | 7.61 |
Ser | 3.17 | 3.21 | 3.17 | 3.17 | 3.22 | 3.07 |
His | 0.53 | 0.55 | 0.53 | 0.56 | 0.52 | 0.49 |
Gly | 40.50 | 40.61 | 41.06 | 39.51 | 41.25 | 39.62 |
Thr | 2.48 | 2.57 | 2.52 | 2.51 | 2.57 | 2.46 |
Arg | 5.05 | 5.12 | 5.23 | 5.09 | 5.15 | 4.89 |
Ala | 13.75 | 13.76 | 13.86 | 13.57 | 13.92 | 13.38 |
Tyr | 0.23 | 0.17 | 0.15 | 0.14 | 0.17 | 0.13 |
Cys | 1.52 | 1.64 | 1.44 | 2.31 | 1.63 | 1.57 |
Val | 1.93 | 1.97 | 1.92 | 1.94 | 1.98 | 1.90 |
Met | 1.00 | 0.87 | 0.75 | 0.94 | 0.80 | 0.81 |
Phe | 1.26 | 1.26 | 1.25 | 1.24 | 1.27 | 1.22 |
Ile | 0.96 | 0.96 | 0.95 | 0.95 | 0.96 | 0.93 |
Leu | 2.17 | 2.17 | 2.17 | 2.16 | 2.19 | 2.11 |
Lys | 2.62 | 2.67 | 2.71 | 2.56 | 2.73 | 2.60 |
Pro | 10.39 | 10.05 | 9.82 | 11.13 | 9.02 | 12.67 |
Asp | 4.66 | 4.65 | 4.66 | 4.61 | 4.71 | 4.54 |
Functional Groups | P1 | P1-Zn | P2 | P2-Zn | P3 | P3-Zn |
---|---|---|---|---|---|---|
N-H | 3316 | 3403 | 3388 | 3415 | 3419 | 3426 |
Amide I | 1651 | 1650 | 1651 | 1652 | 1652 | 1647 |
Amide II | 1542 | 1546 | 1542 | 1545 | 1541 | 1545 |
COO- | 1400 | 1402 | 1399 | 1402 | 1401 | 1403 |
Amide III | 1334 | 1336 | 1334 | 1337 | 1334 | 1337 |
Amide VI | 658 | 591 | 659 | 570 | 659 | 597 |
Samples | Zinc Released after Peptic Digestion (%) | Zinc Released after Peptic-Pancreatic Digestion (%) | Zinc Dialyzability (Bioaccessibility) (%) |
---|---|---|---|
P1 | 10.29 ± 1.54 a | 44.05 ± 1.01 c | 54.34 ± 2.55 b |
P2 | 13.41 ± 0.92 c | 31.94 ± 0.27 b | 45.35 ± 1.19 c |
P3 | 12.11 ± 0.9 b | 21.12 ± 0.19 a | 33.23 ± 1.17 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Shen, X.; Xia, G. Effect of Molecular Weight of Tilapia (Oreochromis Niloticus) Skin Collagen Peptide Fractions on Zinc-Chelating Capacity and Bioaccessibility of the Zinc-Peptide Fractions Complexes in Vitro Digestion. Appl. Sci. 2020, 10, 2041. https://doi.org/10.3390/app10062041
Chen L, Shen X, Xia G. Effect of Molecular Weight of Tilapia (Oreochromis Niloticus) Skin Collagen Peptide Fractions on Zinc-Chelating Capacity and Bioaccessibility of the Zinc-Peptide Fractions Complexes in Vitro Digestion. Applied Sciences. 2020; 10(6):2041. https://doi.org/10.3390/app10062041
Chicago/Turabian StyleChen, Lei, Xuanri Shen, and Guanghua Xia. 2020. "Effect of Molecular Weight of Tilapia (Oreochromis Niloticus) Skin Collagen Peptide Fractions on Zinc-Chelating Capacity and Bioaccessibility of the Zinc-Peptide Fractions Complexes in Vitro Digestion" Applied Sciences 10, no. 6: 2041. https://doi.org/10.3390/app10062041
APA StyleChen, L., Shen, X., & Xia, G. (2020). Effect of Molecular Weight of Tilapia (Oreochromis Niloticus) Skin Collagen Peptide Fractions on Zinc-Chelating Capacity and Bioaccessibility of the Zinc-Peptide Fractions Complexes in Vitro Digestion. Applied Sciences, 10(6), 2041. https://doi.org/10.3390/app10062041