A Phase Fluctuation Based Practical Quantum Random Number Generator Scheme with Delay-Free Structure
Abstract
:1. Introduction
2. Delay-Free Phase Noise QRNG Scheme
2.1. Principle of Scheme
2.2. Experimental Setup
2.3. Post-Processing Method
3. Test Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
QRNG | Quantum random number generator |
QKD | Quantum Key Distribution |
ADC | Analog-to-Digital Converter |
MSB/LSB | Most/Least Significant Bit |
References
- Brunner, N.; Cavalcanti, D.; Pironio, S.; Scarani, V.; Wehner, S. Bell nonlocality. Rev. Mod. Phys. 2014, 86, 419. [Google Scholar] [CrossRef] [Green Version]
- Shannon, C.E. Communication theory of secrecy systems. Bell Syst. Tech. J. 1949, 28, 656. [Google Scholar] [CrossRef]
- Gisin, N.; Ribordy, G.; Tittel, W.; Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 2002, 74, 145. [Google Scholar] [CrossRef] [Green Version]
- Scarani, V.; Bechmann-Pasquinucci, H.; Cerf, N.J.; Dušek, M.; Lütkenhaus, N.; Peev, M. The security of practical quantum key distribution. Rev. Mod. Phys. 2009, 81, 1301. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.; Ma, X.; Zhang, Q.; Lo, H.K.; Pan, J.W. Secure quantum key distribution with realistic devices. arXiv 2019, arXiv:1903.09051. [Google Scholar]
- Pirandola, S.; Andersen, U.; Banchi, L.; Berta, M.; Bunandar, D.; Colbeck, R.; Englund, D.; Gehring, T.; Lupo, C.; Ottaviani, C.; et al. Advances in quantum cryptography. arXiv 2019, arXiv:1906.01645. [Google Scholar] [CrossRef] [Green Version]
- Herrero-Collantes, M.; Garcia-Escartin, J.C. Quantum random number generators. Rev. Mod. Phys. 2017, 89, 015004. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.F.; Yuan, X.; Cao, Z.; Qi, B.; Zhang, Z. Quantum random number generation. npj Quantum Inf. 2016, 2, 16021. [Google Scholar] [CrossRef]
- Bera, M.N.; Acin, A.; Kus, M.; Mitchell, M.W.; Lewenstein, M. Randomness in quantum mechanics, philosophy, physics and technology. Rep. Prog. Phys. 2017, 80, 124001. [Google Scholar] [CrossRef] [Green Version]
- Pironio, S.; Acin, A.; Massar, S.; de la Giroday, A.B.; Matsukevich, D.N.; Maunz, P.; Olmshenk, S.; Hayes, D.; Luo, L.; Manning, T.A.; et al. Random numbers certified by Bell’s theorem. Nature 2010, 464, 1021. [Google Scholar] [CrossRef] [Green Version]
- Colbeck, R.; Kent, A. Private randomness expansion with untrusted devices. J. Phys. A Math. Theor. 2011, 44, 095305. [Google Scholar] [CrossRef]
- Giustina, M.; Mech, A.; Ramelow, S.; Wittmann, B.; Kofler, J.; Beyer, J.; Lita, A.; Calkins, B.; Gerrits, T.; Nam, S. Bell violation using entangled photons without the fair-sampling assumption. Nature 2013, 497, 227. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Zhou, H.Y.; Ma, X.F. Loss-tolerant measurement-device-independent quantum random number generation. New J. Phys. 2015, 17, 125011. [Google Scholar] [CrossRef]
- Cao, Z.; Zhou, H.Y.; Yuan, X.; Ma, X.F. Source-independent quantum random number generation. Phys. Rev. X 2016, 6, 011020. [Google Scholar] [CrossRef] [Green Version]
- Nie, Y.Q.; Guan, J.Y.; Zhou, H.Y.; Zhang, Q.; Ma, X.F.; Zhang, J.; Pan, J.W. Experimental measurement-device- independent quantum random-number generation. Phys. Rev. A 2016, 94, 060301. [Google Scholar] [CrossRef] [Green Version]
- Vallone, G.; Marangon, D.G.; Tomasin, M.; Villoresi, P. Quantum randomness certified by the uncertainty principle. Phys. Rev. A 2014, 90, 052327. [Google Scholar] [CrossRef] [Green Version]
- Marangon, D.G.; Vallone, G.; Villoresi, P. Source-Device-Independent Ultrafast Quantum Random Number Generation. Phys. Rev. Lett. 2017, 118, 060503. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Chen, Z.; Li, Z.; Yang, J.; Su, Q.; Huang, W.; Zhang, Y.; Guo, H. High speed continuous variable source-independent quantum random number generation. Quantum Sci. Technol. 2019, 4, 025013. [Google Scholar] [CrossRef] [Green Version]
- Jennewein, T.; Achleitner, U.; Weihs, G.; Weinfurter, H.; Zeilinger, A. A fast and compact quantum random number generator. Rev. Sci. Instrum. 2000, 71, 1675. [Google Scholar] [CrossRef] [Green Version]
- Stefanov, A.; Gisin, N.; Guinnard, O.; Guinnard, L.; Zbinden, H. Optical quantum random number generator. J. Mod. Opt. 2000, 47, 595. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.X.; Long, G.L.; Li, Y.S. Scheme for a quantum random number generator. J. Appl. Phys. 2006, 100, 056107. [Google Scholar] [CrossRef]
- Ma, H.Q.; Xie, Y.J.; Wu, L.A. Random number generation based on the time of arrival of single photons. Appl. Opt. 2005, 44, 7760. [Google Scholar] [CrossRef] [Green Version]
- Stipčević, M.; Rogina, B.M. Quantum random number generator based on photonic emission in semiconductors. Rev. Sci. Instrum. 2007, 78, 045104. [Google Scholar] [CrossRef] [Green Version]
- Dynes, J.F.; Yuan, Z.L.; Sharpe, A.W.; Shields, A.J. A high speed, postprocessing free, quantum random number generator. Appl. Phys. Lett. 2008, 93, 031109. [Google Scholar] [CrossRef] [Green Version]
- Wayne, M.A.; Jeffrey, E.R.; Akselrod, G.M.; Kwiat, P.G. Photon arrival time quantum random number generation. J. Mod. Opt. 2009, 56, 516. [Google Scholar] [CrossRef] [Green Version]
- Wahl, M.; Leifgen, M.; Berlin, M.; Rohlicke, T.; Rahn, H.J.; Benson, O. An ultrafast quantum random number generator with provably bounded output bias based on photon arrival time measurements. Appl. Phys. Lett. 2011, 98, 171105. [Google Scholar] [CrossRef]
- Nie, Y.Q.; Zhang, H.F.; Zhang, Z.; Wang, J.; Ma, X.F.; Zhang, J.; Pan, J.W. Practical and fast quantum random number generation based on photon arrival time relative to external reference. Appl. Phys. Lett. 2014, 104, 051110. [Google Scholar] [CrossRef] [Green Version]
- Wei, W.; Guo, H. Bias-free true random-number generator. Opt. Lett. 2009, 34, 1876. [Google Scholar] [CrossRef]
- Fürst, M.; Weier, H.; Nauerth, S.; Marangon, D.G.; Kurtsiefer, C.; Weinfurter, H. High speed optical quantum random number generation. Opt. Express 2010, 18, 13029. [Google Scholar] [CrossRef]
- Ren, M.; Wu, E.; Liang, Y.; Jian, Y.; Wu, G.; Zeng, H.P. Quantum random-number generator based on a photon-number-resolving detector. Phys. Rev. A 2011, 83, 023820. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Tang, W.Z.; Liu, Y.; Wei, W. Truly random number generation based on measurement of phase noise of a laser. Phys. Rev. E 2010, 81, 051137. [Google Scholar] [CrossRef] [Green Version]
- Qi, B.; Chi, Y.M.; Lo, H.K.; Qian, L. High-speed quantum random number generation by measuring phase noise of a single-mode laser. Opt. Lett. 2010, 35, 312. [Google Scholar] [CrossRef]
- Jofre, M.; Curty, M.; Steinlechner, F.; Anzolin, G.; Torres, J.P.; Mitchell, M.W.; Pruneri, V. True random numbers from amplified quantum vacuum. Opt. Express 2011, 19, 20665. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.H.; Qi, B.; Ma, X.F.; Xu, H.; Zheng, H.X.; Lo, H.K. Ultrafast quantum random number generation based on quantum phase fluctuations. Opt. Express 2012, 20, 12366. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Z.L.; Lucamarini, M.; Dynes, J.F.; Frohlich, B.; Plews, A.; Shields, A.J. Robust random number generation using steady-state emission of gain-switched laser diodes. Appl. Phys. Lett. 2014, 104, 261112. [Google Scholar] [CrossRef] [Green Version]
- Nie, Y.Q.; Huang, L.L.; Liu, Y.; Payne, F.; Zhang, J.; Pan, J.W. The generation of 68 Gbps quantum random number by measuring laser phase fluctuations. Rev. Sci. Instrum. 2015, 86, 063105. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.G.; Nie, Y.Q.; Zhou, H.Y.; Liang, H.; Ma, X.F.; Zhang, J.; Pan, J.W. Note: Fully integrated 3.2 Gbps quantum random number generator with real-time extraction. Rev. Sci. Instrum. 2016, 87, 076102. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Liu, J.L.; Su, Q.; Li, Z.Y.; Fan, F.; Xu, B.J.; Guo, H. 5.4 Gbps real time quantum random number generator with simple implementation. Opt. Express 2016, 24, 27475–27481. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.L.; Yang, J.; Li, Z.Y.; Su, Q.; Huang, W.; Xu, B.J.; Guo, H. 117 Gbits/s Quantum Random Number Generation With Simple Structure. IEEE Photonics Technol. Lett. 2017, 29, 283–286. [Google Scholar] [CrossRef] [Green Version]
- Gabriel, C.; Wittmann, C.; Sych, D.; Dong, R.F.; Mauerer, W.; Andersen, U.L.; Marquardt, C.; Leuchs, G. A generator for unique quantum random numbers based on vacuum states. Nat. Photonics 2010, 4, 711. [Google Scholar] [CrossRef]
- Shen, Y.; Tian, L.A.; Zou, H.X. Practical quantum random number generator based on measuring the shot noise of vacuum states. Phys. Rev. A 2010, 81, 063814. [Google Scholar] [CrossRef]
- Symul, T.; Assad, S.M.; Lam, P.K. Real time demonstration of high bitrate quantum random number generation with coherent laser light. Appl. Phys. Lett. 2011, 98, 231103. [Google Scholar] [CrossRef] [Green Version]
- Haw, J.Y.; Assad, S.M.; Lance, A.M.; Ng, N.H.Y.; Sharma, V.; Lam, P.K.; Symul, T. Maximization of extractable randomness in a quantum random-number generator. Phys. Rev. Appl. 2015, 3, 054004. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Z.Y.; Zhang, Y.C.; Huang, W.; Yu, S.; Guo, H. 6 Gbps real-time optical quantum random number generator based on vacuum fluctuation. Rev. Sci. Instrum. 2019, 90, 043105. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhang, Y.C.; Zheng, Z.; Chen, Z.; Xu, B.; Yu, S. Finite-size analysis of continuous variable source-independent quantum random number generation. arxiv 2002, arXiv:2002.12767. [Google Scholar]
- Williams, C.R.S.; Salevan, J.C.; Li, X.W.; Roy, R.; Murphy, T.E. Fast physical random number generator using amplified spontaneous emission. Opt. Express 2010, 18, 23584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.W.; Cohen, A.B.; Murphy, T.E.; Roy, R. Scalable parallel physical random number generator based on a superluminescent LED. Opt. Lett. 2011, 36, 1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, W.; Xie, G.D.; Dang, A.H.; Guo, H. High-speed and bias-free optical random number generator. IEEE Photonics Technol. Lett. 2012, 24, 437. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, M.Y.; Luo, B.; Zhang, J.W.; Guo, H. Implementation of 1.6 Tb/s truly random number generation based on a super-luminescent emitting diode. Laser Phys. Lett. 2013, 10, 045001. [Google Scholar] [CrossRef]
- Martin, A.; Sanguinetti, B.; Lim, C.C.W.; Houlmann, R.; Zbinden, H. Quantum Random Number Generation for 1.25 GHz Quantum Key Distribution Systems. IEEE J. Lightwave Technol. 2015, 33, 2855. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.Y.; Li, Z.Y.; Xu, B.J.; Zhang, Y.C.; Guo, H. The m-least significant bits operation for quantum random number generation. J. Phys. B 2019, 52, 195501. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.F.; Xu, F.H.; Xu, H.; Tan, X.Q.; Qi, B.; Lo, H.K. Postprocessing for quantum random-number generators: Entropy evaluation and randomness extraction. Phys. Rev. A 2013, 87, 062327. [Google Scholar] [CrossRef] [Green Version]
- Lax, M. Classical Noise. V. Noise in Self-sustained Oscillators. Phys. Rev. 1967, 160, 290. [Google Scholar] [CrossRef]
- Henry, C.H. Theory of the Linewidth of Semiconductor-Lasers. IEEE J. Quantum Electron. 1982, 18, 259. [Google Scholar] [CrossRef]
- Zhang, X.X.; Zhang, Y.C.; Li, Z.Y.; Yu, S.; Guo, H. 1.2-GHz Balanced Homodyne Detector for Continuous-Variable Quantum Information Technology. IEEE Photonics J. 2018, 10, 6803810. [Google Scholar] [CrossRef]
Statistical Test | p-Value | Result |
---|---|---|
Birthday spacings | 0.122824[KS] | success |
Overlapping permutations | 0.430620 | success |
Ranks of 31 × 31 matrices | 0.605645 | success |
Ranks of 32 × 32 matrices | 0.427548 | success |
Ranks of 6 × 8 matrices | 0.260611[KS] | success |
Monkey tests on 20-bit words | 0.136669[KS] | success |
Monkey test OPSP | 0.43930[KS] | success |
Monkey test OQSO | 0.68062[KS] | success |
Monkey test DNA | 0.61412[KS] | success |
Count 1’s in stream of bytes | 0.662425 | success |
Count 1’s in specific bytes | 0.561794[KS] | success |
Parking lot test | 0.312073[KS] | success |
Minimum distance test | 0.377192[KS] | success |
Random spheres test | 0.440218[KS] | success |
Squeeze test | 0.019830[KS] | success |
Overlapping sums test | 0.053688[KS] | success |
Run test(up) | 0.314213 | success |
Run test(down) | 0.492526 | success |
Craps test No. of wins | 0.420491 | success |
Craps test throw/game | 0.965724 | success |
Statistical Test | p-Value | Proportion | Result |
---|---|---|---|
Frequency | 0.372076 | 597 | Success |
Block Frequency | 0.292462 | 596 | Success |
Cumulative Sums | 0.045724[KS] | 590 | Success |
Runs | 0.294970 | 593 | Success |
Longest Run | 0.940051 | 592 | Success |
Rank | 0.316426 | 595 | Success |
FFT | 0.959554 | 590 | Success |
Non-overlapping | 0.743782[KS] | 595 | Success |
Overlapping | 0.065969 | 596 | Success |
Universal | 0.494772 | 598 | Success |
Approx. Entropy | 0.908376 | 596 | Success |
Excursions | 0.558001[KS] | 593 | Success |
Excursions Var. | 0.032325[KS] | 590 | Success |
Serial | 0.225053[KS] | 592 | Success |
Complexity | 0.869431 | 595 | Success |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, M.; Chen, Z.; Zhang, Y.; Guo, H. A Phase Fluctuation Based Practical Quantum Random Number Generator Scheme with Delay-Free Structure. Appl. Sci. 2020, 10, 2431. https://doi.org/10.3390/app10072431
Huang M, Chen Z, Zhang Y, Guo H. A Phase Fluctuation Based Practical Quantum Random Number Generator Scheme with Delay-Free Structure. Applied Sciences. 2020; 10(7):2431. https://doi.org/10.3390/app10072431
Chicago/Turabian StyleHuang, Min, Ziyang Chen, Yichen Zhang, and Hong Guo. 2020. "A Phase Fluctuation Based Practical Quantum Random Number Generator Scheme with Delay-Free Structure" Applied Sciences 10, no. 7: 2431. https://doi.org/10.3390/app10072431
APA StyleHuang, M., Chen, Z., Zhang, Y., & Guo, H. (2020). A Phase Fluctuation Based Practical Quantum Random Number Generator Scheme with Delay-Free Structure. Applied Sciences, 10(7), 2431. https://doi.org/10.3390/app10072431