Determination of Trolox Equivalent Antioxidant Capacity in Berries Using Amperometric Tyrosinase Biosensor Based on Multi-Walled Carbon Nanotubes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Preparation of Electric Transducer
2.3. Preparation of Tyrosinase Biosensor
2.4. Apparatus and Methods
2.5. Preparation of Berries for Analysis
3. Results and Discussion
3.1. Construction of Tyrosinase Biosensor
3.2. Characterisation of Tyrosinase Biosensor
3.3. Tyrosinase Activity towards Trolox
3.4. Effect of Stirring Speed
3.5. Selection of Optimal pH Value of Working Medium
3.6. Effect of Working Potential
3.7. Water Content in Berries
3.8. Analysis of Berries
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Neto, C.C. Cranberry and blueberry: Evidence for protective effects against cancer and vascular diseases. Mol. Nutr. Food Res. 2007, 51, 652–664. [Google Scholar] [CrossRef] [PubMed]
- Olas, B. Berry phenolic antioxidants – Implications for human health? Front. Pharmacol. 2018, 9, 78. [Google Scholar] [CrossRef] [PubMed]
- Kähkönen, M.P.; Hopia, A.I.; Heinonen, M. Berry phenolics and their antioxidant activity. J. Agric. Food Chem. 2001, 49, 4076–4082. [Google Scholar] [CrossRef] [PubMed]
- Triantis, T.; Stelakis, A.; Dimotikali, D.; Papadopoulos, K. Investigations on the antioxidant activity of fruit and vegetable aqueous extracts on superoxide radical anion using chemiluminescence techniques. Anal. Chim. Acta 2005, 536, 101–105. [Google Scholar] [CrossRef]
- Apak, R.; Gorinstein, S.; Böhm, V.; Shaikh, K.M.; Özyürek, M.; Güçlü, K. Methods of measurement and evaluation of natural antioxidant capacity/activity (IUPAC Technical Report). Pure Appl. Chem. 2013, 85, 957–998. [Google Scholar] [CrossRef] [Green Version]
- Atala, E.; Vásquez, L.; Speisky, H.; Lissic, E.; López Alarcónd, C. Ascorbic acid contribution to ORAC values in berry extracts: An evaluation by the ORAC pyrogallol red methodology. Food Chem. 2009, 113, 331–335. [Google Scholar] [CrossRef]
- Rabeta, M.S.; Nur Faraniza, R. Total phenolic content and ferric reducing antioxidant power of the leaves and fruits of Garcinia atrovirdis and Cynometra cauliflora. Int. Food Res. J. 2013, 20, 1691–1696. [Google Scholar]
- Denev, P.; Ciz, M.; Ambrozova, G.; Lojek, A.; Yanakieva, I.; Kratchanova, M. Solid phase extraction of berries’ anthocyanins and evaluation of their antioxidative properties. Food Chem. 2010, 123, 1055–1061. [Google Scholar] [CrossRef]
- Pantelidis, G.G.; Vasilakakis, M.; Manganaris, G.A.; Diamantidis, G. Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and Cornelian cherries. Food Chem. 2007, 102, 773–778. [Google Scholar] [CrossRef]
- Giacomelli, C.; Giacomelli, F.C.; Alves, L.O.; Timbola, A.K.; Spinelli, A. Electrochemistry of vitamin E hydro alcoholic solutions. J. Braz. Chem. Soc. 2004, 15, 748–755. [Google Scholar] [CrossRef]
- Isaacs, N.S.; van Eldik, R. A mechanistic study of the reduction of quinones by ascorbic acid. J. Chem. Soc. Perkin. Trans. 2 1997, 1465–1468. [Google Scholar] [CrossRef]
- Sýs, M.; Pekec, B.; Kalcher, K.; Vytřas, K. Amperometric enzyme carbon paste based biosensor for quantification of hydroquinone and polyphenolic antioxidant capacity. Int. J. Electrochem. Sci. 2013, 8, 9030–9040. [Google Scholar]
- Rolff, M.; Schottenheim, J.; Peters, G.; Tuczek, F. The first catalytic tyrosinase model system based on a mononuclear copper(I) complex: Kinetics and mechanism. Angew. Chem. Int. Ed. 2010, 49, 6438–6442. [Google Scholar] [CrossRef] [PubMed]
- Ismaya, W.T.; Rozeboom, H.J.; Weijn, A.; Mes, J.J.; Fusetti, F.; Wichers, H.J.; Dijkstra, B.W. Crystal structure of Agaricus bisporus mushroom tyrosinase: Identity of the tetramer subunits and interaction with tropolone. Biochemistry 2011, 50, 5477–5486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skládal, P. Mushroom tyrosinase modified carbon paste electrode as an amperometric biosensor for phenols. Collect. Czech. Chem. 1991, 56, 1427–1433. [Google Scholar] [CrossRef]
- Yao, W.W.; Peng, H.M.; Webster, R.D. Electrochemistry of α-tocopherol (vitamin E) and α-tocopherol quinone films deposited on electrode surfaces in the presence and absence of lipid multilayers. J. Phys. Chem. 2009, 113, 21805–21814. [Google Scholar] [CrossRef]
- Sýs, M.; Metelka, R.; Mikysek, T.; Vytřas, K. Improvement of enzyme carbon paste based biosensor using carbon nanotubes for determination of water soluble analogue of vitamin E. Chem. Pap. 2015, 69, 150–157. [Google Scholar] [CrossRef]
- Sýs, M.; Metelka, R.; Vytřas, K. Comparison of tyrosinase biosensor based on carbon nanotubes with DPPH spectrophotometric assay in determination of TEAC in selected Moravian wines. Monatshefte fuer Chem. 2015, 146, 813–817. [Google Scholar] [CrossRef]
- Švancara, I.; Vytřas, K.; Metelka, R. Casing for carbon paste for electrochemical measurements. Czech Patent CZ 301714 B6; Int. Cl. G01N 27/30, 2 December 2002. [Google Scholar]
- Mikysek, T.; Stočes, M.; Švancara, I.; Ludvík, J. The ohmic resistance effect for characterisation of carbon nanotube paste electrodes (CNTPEs). RSC Adv. 2012, 2, 3684–3690. [Google Scholar] [CrossRef]
- Sýs, M.; Metelka, R.; Vytřas, K. Amperometric tyrosinase carbon paste based biosensor in food analysis. Chem. Listy 2014, 108, 179–182. [Google Scholar]
- Seeram, N.P.; Adams, L.S.; Zhang, Y.; Lee, R.; Sand, D.; Scheuller, H.S.; Heber, D. Blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry extracts inhibit growth and stimulate apoptosis of human cancer cells in vitro. J. Agric. Food Chem. 2006, 54, 9329–9339. [Google Scholar] [CrossRef] [PubMed]
- Akyilmaz, E.; Kozgus, O.; Türkmen, H.; Cetinkaya, B. A mediated polyphenol oxidase biosensor immobilized by electropolymerization of 1,2-diamino-benzene. Bioelectrochemistry 2010, 78, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Ancos, B.; González, E.M.; Cano, M.P. Ellagic acid, vitamin C, and total phenolic contents and radical scavenging capacity affected by freezing and frozen storage in raspberry fruit. J. Agric. Food Chem. 2000, 48, 4565–4570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jabłońska-Ryś, E.; Zalewska-Korona, M.; Kalbarczyk, J. Antioxidant capacity, ascorbic acid and phenolic content in wild edible fruits. J. Fruit Ornam. Plant Res. 2009, 17, 115–120. [Google Scholar]
- Velioglu, Y.S.; Mazza, G.; Gao, L.; Oomah, B.D. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J. Agric. Food Chem. 1998, 46, 4113–4117. [Google Scholar] [CrossRef]
- Wang, H.; Cao, G.; Prior, R.L. Total antioxidant capacity of fruits. J. Agric. Food Chem. 1996, 44, 701–705. [Google Scholar] [CrossRef]
- Pornanong, A.; Nipaporn, B.; Teerapol, S. The properties and stability of anthocyanins in mulberry fruits. Food Res. Int. 2010, 43, 1093–1097. [Google Scholar] [CrossRef]
- USDA National Nutrient Database for Standard Reference, Release 28. Available online: https://ods.od.nih.gov/pubs/usdandb/VitaminC-Content.pdf (accessed on 4 April 2020).
- Halvorsen, B.L.; Holte, K.; Myhrstad, M.C.W.; Barikmo, I.; Hvattum, E.; Remberg, S.F.; Wold, A.B.; Haffner, K.; Baugerod, H.; Andersen, L.F.; et al. A systematic screening of total antioxidants in dietary plants. Nutr. J. 2002, 132, 461–471. [Google Scholar] [CrossRef] [Green Version]
- Holasová, M.; Fiedlerová, V. Comparison of methods for determination of antioxidant activity in fruit and vegetable juices. Chem. Listy 2011, 105, 766–772. [Google Scholar]
- Pellegrini, N.; Serafini, M.; Colombi, B.; Del Rio, D.; Salvatore, S.; Bianchi, M.; Brighenti, F. Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. Nutr. J. 2003, 133, 2812–2819. [Google Scholar] [CrossRef] [Green Version]
- Tosun, M.; Ercisli, S.; Karlidag, H. Characterization of red raspberry (Rubus idaeus L.) genotypes for their physicochemical properties. J. Food Sci. 2009, 74, C575–C579. [Google Scholar] [CrossRef] [PubMed]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Byrne, D.H. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
Berries | TEAC in Dry Matter (in Pulp) (mg·100 g−1) | AA in Pulp b [mg·100 g−1] | |
---|---|---|---|
Tyrosinase Biosensor a | DPPH a Assay | ||
Strawberries | 1569 (133) | 6735 (570) | 59 |
Blackberries | 2593 (337) | 3868 (503) | 30 |
Raspberries | 5317 (793) | 5968 (890) | 32 |
Blueberries | 1917 (270) | 4878 (687) | 14 |
Cranberries | 6738 (935) | 8027 (1114) | 13 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frangu, A.; Ashrafi, A.M.; Sýs, M.; Arbneshi, T.; Metelka, R.; Adam, V.; Vlček, M.; Richtera, L. Determination of Trolox Equivalent Antioxidant Capacity in Berries Using Amperometric Tyrosinase Biosensor Based on Multi-Walled Carbon Nanotubes. Appl. Sci. 2020, 10, 2497. https://doi.org/10.3390/app10072497
Frangu A, Ashrafi AM, Sýs M, Arbneshi T, Metelka R, Adam V, Vlček M, Richtera L. Determination of Trolox Equivalent Antioxidant Capacity in Berries Using Amperometric Tyrosinase Biosensor Based on Multi-Walled Carbon Nanotubes. Applied Sciences. 2020; 10(7):2497. https://doi.org/10.3390/app10072497
Chicago/Turabian StyleFrangu, Arbër, Amir M. Ashrafi, Milan Sýs, Tahir Arbneshi, Radovan Metelka, Vojtěch Adam, Milan Vlček, and Lukáš Richtera. 2020. "Determination of Trolox Equivalent Antioxidant Capacity in Berries Using Amperometric Tyrosinase Biosensor Based on Multi-Walled Carbon Nanotubes" Applied Sciences 10, no. 7: 2497. https://doi.org/10.3390/app10072497
APA StyleFrangu, A., Ashrafi, A. M., Sýs, M., Arbneshi, T., Metelka, R., Adam, V., Vlček, M., & Richtera, L. (2020). Determination of Trolox Equivalent Antioxidant Capacity in Berries Using Amperometric Tyrosinase Biosensor Based on Multi-Walled Carbon Nanotubes. Applied Sciences, 10(7), 2497. https://doi.org/10.3390/app10072497