Effects of tDCS on Muscle Stiffness in Children with Cerebral Palsy Measured by Myotonometry: A Preliminary Study
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measures
2.3. Procedures
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rosenbaum, P.; Paneth, N.; Leviton, A.; Goldstein, M.; Bax, M.; Damiano, D.; Dan, B.; Jacobsson, B. A report: The definition and classification of cerebral palsy April 2006. Dev. Med. Child Neurol. Suppl. 2007, 109, 8–14. [Google Scholar] [PubMed]
- Abbruzzese, G.; Berardelli, A. Sensorimotor integration in movement disorders. Mov. Disord. 2003, 18, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Knechtel, L.; Schall, U.; Cooper, G.; Ramadan, S.; Stanwell, P.; Jolly, T.; Thienel, R. Transcranial direct current stimulation of prefrontal cortex: An auditory event-related potential and proton magnetic resonance spectroscopy study. Neurol. Psychiatry Brain Res. 2014, 20, 96–101. [Google Scholar] [CrossRef]
- Brunoni, A.R.; Nitsche, M.A.; Bolognini, N.; Bikson, M.; Wagner, T.; Merabet, L.; Edwards, D.J.; Valero-Cabre, A.; Rotenberg, A.; Pascual-Leone, A. Clinical research with transcranial direct current stimulation (tDCS): Challenges and future directions. Brain Stimul. 2012, 5, 175–195. [Google Scholar] [CrossRef] [Green Version]
- Paulus, W. Transcranial direct current stimulation (tDCS). In Supplements to Clinical Neurophysiology; Elsevier: Amsterdam, The Netherland, 2003; Volume 56, pp. 249–254. [Google Scholar]
- Novak, I.; Mcintyre, S.; Morgan, C.; Campbell, L.; Dark, L.; Morton, N.; Stumbles, E.; Wilson, S.A.; Goldsmith, S. A systematic review of interventions for children with cerebral palsy: State of the evidence. Dev. Med. Child Neurol. 2013, 55, 885–910. [Google Scholar] [CrossRef]
- Stagg, C.J.; Best, J.G.; Stephenson, M.C.; O’Shea, J.; Wylezinska, M.; Kincses, Z.T.; Morris, P.G.; Matthews, P.M.; Johansen-Berg, H. Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. J. Neurosci. 2009, 29, 5202–5206. [Google Scholar] [CrossRef]
- Barber, L.; Barrett, R.; Lichtwark, G. Passive muscle mechanical properties of the medial gastrocnemius in young adults with spastic cerebral palsy. J. Biomech. 2011, 44, 2496–2500. [Google Scholar] [CrossRef]
- Sanger, T.D.; Chen, D.; Delgado, M.R.; Gaebler-Spira, D.; Hallett, M.; Mink, J.W. Definition and classification of negative motor signs in childhood. Pediatrics 2006, 118, 2159–2167. [Google Scholar] [CrossRef] [Green Version]
- De Vlugt, E.; de Groot, J.H.; Schenkeveld, K.E.; Arendzen, J.; van Der Helm, F.C.; Meskers, C.G. The relation between neuromechanical parameters and Ashworth score in stroke patients. J. Neuroeng. Rehabil. 2010, 7, 35. [Google Scholar] [CrossRef] [Green Version]
- Pandyan, A.D.; Price, C.I.; Barnes, M.P.; Johnson, G.R. A biomechanical investigation into the validity of the modified Ashworth Scale as a measure of elbow spasticity. Clin. Rehabil. 2003, 17, 290–294. [Google Scholar] [CrossRef]
- Chuang, L.-L.; Wu, C.-Y.; Lin, K.-C. Reliability, validity, and responsiveness of myotonometric measurement of muscle tone, elasticity, and stiffness in patients with stroke. Arch. Phys. Med. Rehabil. 2012, 93, 532–540. [Google Scholar] [CrossRef] [PubMed]
- Ditroilo, M.; Hunter, A.M.; Haslam, S.; De Vito, G. The effectiveness of two novel techniques in establishing the mechanical and contractile responses of biceps femoris. Physiol. Meas. 2011, 32, 1315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawczynski, A.; Mroczek, D.; Andersen, R.E.; Stefaniak, T.; Arendt-Nielsen, L.; Madeleine, P. Trapezius viscoelastic properties are heterogeneously affected by eccentric exercise. J. Sci. Med. Sport 2018, 21, 864–869. [Google Scholar] [CrossRef] [PubMed]
- Pozarowszczyk, B.; Pawlaczyk, W.; Smoter, M.; Zarzycki, A.; Mroczek, D.; Kumorek, M.; Witkowski, K.; Kawczyński, A. Effects of Karate Fights on Achilles Tendon Stiffness Measured by Myotonometry. J. Hum. Kinet. 2017, 56, 93–97. [Google Scholar] [CrossRef]
- Fregni, F.; Boggio, P.; Nitsche, M.; Pascual-Leone, A. Transcranial direct current stimulation. Br. J. Psychiatry 2005, 186, 446–447. [Google Scholar] [CrossRef] [Green Version]
- Zarzycki, A.; Stawarz, M.; Maillette, J.; Lovecchio, N.; Zago, M.; Kawczynski, A.; Klich, S. Acute changes of Achilles tendon thickness investigated by ultrasonography after shotokan and kyokushin karate training. Arch. Budo 2018, 14, 213–218. [Google Scholar]
- Ho, K.-A.; Taylor, J.L.; Chew, T.; Gálvez, V.; Alonzo, A.; Bai, S.; Dokos, S.; Loo, C.K. The effect of transcranial direct current stimulation (tDCS) electrode size and current intensity on motor cortical excitability: Evidence from single and repeated sessions. Brain Stimul. 2016, 9, 1–7. [Google Scholar] [CrossRef]
- Nitsche, M.A.; Paulus, W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 2001, 57, 1899–1901. [Google Scholar] [CrossRef]
- Grecco, L.A.C.; Duarte, N.d.A.C.; Mendonça, M.E.; Cimolin, V.; Galli, M.; Fregni, F.; Oliveira, C.S. Transcranial direct current stimulation during treadmill training in children with cerebral palsy: A randomized controlled double-blind clinical trial. Res. Dev. Disabil. 2014, 35, 2840–2848. [Google Scholar] [CrossRef]
- Lazzari, R.D.; Politti, F.; Santos, C.A.; Dumont, A.J.L.; Rezende, F.L.; Grecco, L.A.C.; Ferreira, L.A.B.; Oliveira, C.S. Effect of a single session of transcranial direct-current stimulation combined with virtual reality training on the balance of children with cerebral palsy: A randomized, controlled, double-blind trial. J. Phys. Ther. Sci. 2015, 27, 763–768. [Google Scholar] [CrossRef] [Green Version]
- Blesneag, A.; Popa, L.; Stan, A. Non-invasive brain stimulation in early rehabilitation after stroke. J. Med. Life 2015, 8, 52. [Google Scholar] [PubMed]
- Moreno-Duarte, I.; Gebodh, N.; Schestatsky, P.; Guleyupoglu, B.; Reato, D.; Bikson, M.; Fregni, F. Transcranial electrical stimulation: Transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS), transcranial pulsed current stimulation (tPCS), and transcranial random noise stimulation (tRNS). In The Stimulated Brain; Elsevier: Amsterdam, The Netherland, 2014; pp. 35–59. [Google Scholar]
- Fecteau, S.; Agosta, S.; Hone-Blanchet, A.; Fregni, F.; Boggio, P.; Ciraulo, D.; Pascual-Leone, A. Modulation of smoking and decision-making behaviors with transcranial direct current stimulation in tobacco smokers: A preliminary study. Drug Alcohol Depend. 2014, 140, 78–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antal, A.; Kincses, T.Z.; Nitsche, M.A.; Bartfai, O.; Paulus, W. Excitability changes induced in the human primary visual cortex by transcranial direct current stimulation: Direct electrophysiological evidence. Investig. Ophthalmol. Vis. Sci. 2004, 45, 702–707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monte-Silva, K.; Kuo, M.-F.; Liebetanz, D.; Paulus, W.; Nitsche, M.A. Shaping the optimal repetition interval for cathodal transcranial direct current stimulation (tDCS). J. Neurophysiol. 2010, 103, 1735–1740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batsikadze, G.; Moliadze, V.; Paulus, W.; Kuo, M.F.; Nitsche, M. Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. J. Physiol. 2013, 591, 1987–2000. [Google Scholar] [CrossRef]
- Auvichayapat, N.; Amatachaya, A.; Auvichayapat, P. Reduction of spasticity in cerebral palsy by anodal transcranial direct current stimulation. J. Med. Assoc. Thail. 2014, 97, 954–962. [Google Scholar]
- Chen, J.L.; Schlaug, G. Increased resting state connectivity between ipsilesional motor cortex and contralesional premotor cortex after transcranial direct current stimulation with physical therapy. Sci. Rep. 2016, 6, 23271. [Google Scholar] [CrossRef]
- Hesse, S.; Werner, C.; Schonhardt, E.; Bardeleben, A.; Jenrich, W.; Kirker, S. Combined transcranial direct current stimulation and robot-assisted arm training in subacute stroke patients: A pilot study. Restor. Neurol. Neurosci. 2007, 25, 9–15. [Google Scholar]
- Gupta, A.; Kumar, S.N.; Taly, A.B. Neurological and functional recovery in acute transverse myelitis patients with inpatient rehabilitation and magnetic resonance imaging correlates. Spinal Cord 2016, 54, 804–808. [Google Scholar] [CrossRef]
- Agyapong-Badu, S.; Warner, M.; Samuel, D.; Stokes, M. Measurement of ageing effects on muscle tone and mechanical properties of rectus femoris and biceps brachii in healthy males and females using a novel hand-held myometric device. Arch. Gerontol. Geriatr. 2016, 62, 59–67. [Google Scholar] [CrossRef] [Green Version]
- Bailey, L.; Samuel, D.; Warner, M.; Stokes, M. Parameters representing muscle tone, elasticity and stiffness of biceps brachii in healthy older males: Symmetry and within-session reliability using the MyotonPRO. J. Neurol. Disord. 2013, 1, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Braendvik, S.M.; Roeleveld, K. The role of co-activation in strength and force modulation in the elbow of children with unilateral cerebral palsy. J. Electromyogr. Kinesiol. 2012, 22, 137–144. [Google Scholar] [CrossRef] [PubMed]
- De Bruin, M.; Veeger, H.E.; Kreulen, M.; Smeulders, M.J.; Bus, S.A. Biceps brachii can add to performance of tasks requiring supination in cerebral palsy patients. J. Electromyogr. Kinesiol. 2013, 23, 516–522. [Google Scholar] [CrossRef] [PubMed]
- Chaudhari, S.; Deo, B. Neurodevelopmental assessment in the first year with emphasis on evolution of tone. Indian Pediatrics 2006, 43, 527. [Google Scholar] [PubMed]
- Trompetto, C.; Marinelli, L.; Mori, L.; Pelosin, E.; Currà, A.; Molfetta, L.; Abbruzzese, G. Pathophysiology of spasticity: Implications for neurorehabilitation. BioMed Res. Int. 2014, 2014, 354906. [Google Scholar] [CrossRef] [PubMed]
Sessions | m. Flexor Carpi Radialis | m. Biceps Brachii |
---|---|---|
Before therapy | 295.4 ± 49.8 | 191.4 ± 35.9 |
After therapy | 246 ± 29.7 * | 210 ± 27.6 |
Sessions | m. Flexor Carpi Radialis | m. Biceps Brachii |
---|---|---|
1st day of the experiment | 289.2 ± 50.8 | 187.4 ± 33.8 |
10th day of the experiment | 293.4 ± 47.3 | 183.2 ± 31.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smoter, M.; Jędrzejczyk-Góral, B.; Chen, A.; Ciszek, B.; Ignasiak, Z. Effects of tDCS on Muscle Stiffness in Children with Cerebral Palsy Measured by Myotonometry: A Preliminary Study. Appl. Sci. 2020, 10, 2616. https://doi.org/10.3390/app10072616
Smoter M, Jędrzejczyk-Góral B, Chen A, Ciszek B, Ignasiak Z. Effects of tDCS on Muscle Stiffness in Children with Cerebral Palsy Measured by Myotonometry: A Preliminary Study. Applied Sciences. 2020; 10(7):2616. https://doi.org/10.3390/app10072616
Chicago/Turabian StyleSmoter, Małgorzata, Beata Jędrzejczyk-Góral, Aiguo Chen, Bogdan Ciszek, and Zofia Ignasiak. 2020. "Effects of tDCS on Muscle Stiffness in Children with Cerebral Palsy Measured by Myotonometry: A Preliminary Study" Applied Sciences 10, no. 7: 2616. https://doi.org/10.3390/app10072616
APA StyleSmoter, M., Jędrzejczyk-Góral, B., Chen, A., Ciszek, B., & Ignasiak, Z. (2020). Effects of tDCS on Muscle Stiffness in Children with Cerebral Palsy Measured by Myotonometry: A Preliminary Study. Applied Sciences, 10(7), 2616. https://doi.org/10.3390/app10072616