Which Type of Exercise Is More Beneficial for Cognitive Function? A Meta-Analysis of the Effects of Open-Skill Exercise versus Closed-Skill Exercise among Children, Adults, and Elderly Populations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Selection Criteria
2.3. Data Extraction and Analysis
2.4. Risk of Bias Assessment
2.5. Study Quality Assessment
3. Results
3.1. Included Studies
3.2. Comparison of Overall Cognitive Performance in Cross-Sectional Studies
3.3. Specific Cognitive Performance
3.4. Comparison of Overall Cognitive Performance in Intervention Studies
3.5. Moderator Analysis
4. Discussion
4.1. Differences in Cognitive Function between OSE and CSE
4.2. Potential Mechanism for OSE’s Superiority to CSE
4.3. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Hillman, C.H.; Erickson, K.I.; Kramer, A.F. Be smart, exercise your heart: Exercise effects on brain and cognition. Nat. Rev. Neurosci. 2008, 9, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, M.; de Sousa, A.; Medeiros, A.R.; Del Rosso, S.; Stults-Kolehmainen, M.; Boullosa, D.A. The influence of exercise and physical fitness status on attention: A systematic review. Int. Rev. Sport Exerc. Psychol. 2019, 12, 202–234. [Google Scholar] [CrossRef]
- Smith, P.J.; Blumenthal, J.A.; Hoffman, B.M.; Cooper, H.; Strauman, T.A.; Welsh-Bohmer, K.; Browndyke, J.N.; Sherwood, A. Aerobic exercise and neurocognitive performance: A meta-analytic review of randomized controlled trials. Psychosom. Med. 2010, 72, 239. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Wang, B.; Lu, Y.; Zhu, Q.; Shi, Z.; Ren, J. The relationship between different exercise modes and visuospatial working memory in older adults: A cross-sectional study. PeerJ 2016, 4, e2254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, A.G.; Yan, J.; Yin, H.C.; Pan, C.Y.; Chang, Y.K. Effects of acute aerobic exercise on multiple aspects of executive function in preadolescent children. Psychol. Sport Exerc. 2014, 15, 627–636. [Google Scholar] [CrossRef]
- Davis, C.L.; Tomporowski, P.D.; McDowell, J.E.; Austin, B.P.; Miller, P.H.; Yanasak, N.E.; Allison, J.D. Exercise improves executive function and achievement and alters brain activation in overweight children: A randomized, controlled trial. Health Psychol. 2011, 30, 91. [Google Scholar] [CrossRef] [Green Version]
- Yanagisawa, H.; Dan, I.; Tsuzuki, D.; Kato, M.; Okamoto, M.; Kyutoku, Y.; Soya, H. Acute moderate exercise elicits increased dorsolateral prefrontal activation and improves cognitive performance with Stroop test. Neuroimage 2010, 50, 1702–1710. [Google Scholar] [CrossRef]
- Voss, M.W.; Kramer, A.F.; Basak, C.; Prakash, R.S.; Roberts, B. Are expert athletes ‘expert’ in the cognitive laboratory? A meta-analytic review of cognition and sport expertise. Appl. Cogn. Psychol. 2010, 24, 812–826. [Google Scholar] [CrossRef]
- Sexton, C.E.; Betts, J.F.; Demnitz, N.; Dawes, H.; Ebmeier, K.P.; Johansen-Berg, H. A systematic review of MRI studies examining the relationship between physical fitness and activity and the white matter of the ageing brain. Neuroimage 2016, 131, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Sibley, B.A.; Etnier, J.L. The relationship between physical activity and cognition in children: A meta-analysis. Pediatric Exerc. Sci. 2003, 15, 243–256. [Google Scholar] [CrossRef] [Green Version]
- Hwang, J.; Brothers, R.M.; Castelli, D.M.; Glowacki, E.M.; Chen, Y.T.; Salinas, M.M.; Kim, J.; Jung, Y.; Calvert, H.G. Acute high-intensity exercise-induced cognitive enhancement and brain-derived neurotrophic factor in young, healthy adults. Neurosci. Lett. 2016, 630, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Colcombe, S.J.; Erickson, K.I.; Raz, N.; Webb, A.G.; Cohen, N.J.; McAuley, E.; Kramer, A.F. Aerobic fitness reduces brain tissue loss in aging humans. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2003, 58, M176–M180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunt, D. Understanding Literacy and Cognition. In Cognition and Learning; Springer: Boston, MA, USA, 1989; pp. 73–84. [Google Scholar]
- Funahashi, S. Neuronal mechanisms of executive control by the prefrontal cortex. Neurosci. Res. 2001, 39, 147–165. [Google Scholar] [CrossRef]
- Diamond, A. The early development of executive functions. Lifesp. Cogn. Mech. Chang. 2006, 210, 70–95. [Google Scholar] [CrossRef]
- Strauss, E.; Sherman, E.M.S.; Spreen, O. A Compendium of Neuropsychological Tests: Administration, Norms, and Commentary; Oxford University Press: New York, NY, USA, 2006. [Google Scholar]
- Hall, C.D.; Smith, A.L.; Keele, S.W. The impact of aerobic activity on cognitive function in older adults: A new synthesis based on the concept of executive control. Eur. J. Cogn. Psychol. 2001, 13, 279–300. [Google Scholar] [CrossRef]
- Guiney, H.; Machado, L. Benefits of regular aerobic exercise for executive functioning in healthy populations. Psychon. Bull. Rev. 2013, 20, 73–86. [Google Scholar] [CrossRef]
- Miyake, A.; Friedman, N.P.; Emerson, M.J.; Witzki, A.H.; Howerter, A.; Wager, T.D. The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cogn. Psychol. 2000, 41, 49–100. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.H.; Chang, C.C.; Liang, Y.M.; Shih, C.M.; Chiu, W.S.; Tseng, P.; Hung, D.L.; Tzeng, O.J.L.; Muggleton, N.G.; Juan, C.H. Open vs. closed skill sports and the modulation of inhibitory control. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [Green Version]
- Hung, C.L.; Tseng, J.W.; Chao, H.H.; Hung, T.M.; Wang, H.S. Effect of acute exercise mode on serum brain-derived neurotrophic factor (BDNF) and task switching performance. J. Clin. Med. 2018, 7, 301. [Google Scholar] [CrossRef] [Green Version]
- Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Rep. 1985, 100, 126–131. [Google Scholar] [CrossRef]
- Tsai, C.L.; Pan, C.Y.; Chen, F.C.; Tseng, Y.T. Open-and closed-skill exercise interventions produce different neurocognitive effects on executive functions in the elderly: A 6-month randomized, controlled trial. Front. Aging Neurosci. 2017, 9, 294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, M.; Jäger, K.; Egger, F.; Roebers, C.M.; Conzelmann, A. Cognitively engaging chronic physical activity, but not aerobic exercise, affects executive functions in primary school children: A group-randomized controlled trial. J. Sport Exerc. Psychol. 2015, 37, 575–591. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, J.; Matthaeus, L. Athletics and executive functioning: How athletic participation and sport type correlate with cognitive performance. Psychol. Sport Exerc. 2014, 15, 521–527. [Google Scholar] [CrossRef]
- Peng, H.; Gao, Y.; Mao, X. The roles of sensory function and cognitive load in age differences in inhibition: Evidence from the Stroop task. Psychol. Aging 2017, 32, 42. [Google Scholar] [CrossRef]
- Zsembik, B.A.; Peek, M.K. Race differences in cognitive functioning among older adults. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 2001, 56, S266–S274. [Google Scholar] [CrossRef] [Green Version]
- Korz, V.; Frey, J.U. Emotional and cognitive reinforcement of rat hippocampal long-term potentiation by different learning paradigms. Neuron Glia Biol. 2004, 1, 253–261. [Google Scholar] [CrossRef]
- Hillman, C.H.; Kamijo, K.; Scudder, M. A review of chronic and acute physical activity participation on neuroelectric measures of brain health and cognition during childhood. Prev. Med. 2011, 52, S21–S28. [Google Scholar] [CrossRef] [Green Version]
- Jia, R.; Liang, J.; Xu, Y.; Wang, Y.Q. Effects of physical activity and exercise on the cognitive function of patients with Alzheimer disease: A meta-analysis. BMC Geriatr. 2019, 19, 181. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Altman, D.; Antes, G.; Atkins, D.; Barbour, V.; Barrowman, N.; Berlin, J.A.; et al. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef] [Green Version]
- Streiner, D.L. Maintaining standards: Differences between the standard deviation and standard error, and when to use each. Can. J. Psychiatry 1996, 41, 498–502. [Google Scholar] [CrossRef]
- Lampit, A.; Hallock, H.; Valenzuela, M. Computerized cognitive training in cognitively healthy older adults: A systematic review and meta-analysis of effect modifiers. PLoS Med. 2014, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, X.; Yin, S.; Lang, M.; He, R.; Li, J. The more the better? A meta-analysis on effects of combined cognitive and physical intervention on cognition in healthy older adults. Ageing Res. Rev. 2016, 31, 67–79. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sterne, J.A.C.; Harbord, R.M. Funnel plots in meta-analysis. Stata J. 2004, 4, 127–141. [Google Scholar] [CrossRef] [Green Version]
- Fuezeki, E.; Engeroff, T.; Banzer, W. Health benefits of light-intensity physical activity: A systematic review of accelerometer data of the National Health and Nutrition Examination Survey (NHANES). Sports Med. 2017, 47, 1769–1793. [Google Scholar] [CrossRef]
- Engeroff, T.; Ingmann, T.; Banzer, W. Physical activity throughout the adult life span and domain-specific cognitive function in old age: A systematic review of cross-sectional and longitudinal data. Sports Med. 2018, 48, 1405–1436. [Google Scholar] [CrossRef]
- Giglia, G.; Brighina, F.; Zangla, D.; Bianco, A.; Chiavetta, E.; Palma, A.; Fierro, B. Visuospatial attention lateralization in volleyball players and in rowers. Percept. Mot. Sk. 2011, 112, 915–925. [Google Scholar] [CrossRef] [Green Version]
- Dai, C.T.; Chang, Y.K.; Huang, C.J.; Hung, T.M. Exercise mode and executive function in older adults: An ERP study of task-switching. Brain Cogn. 2013, 83, 153–162. [Google Scholar] [CrossRef]
- Wang, C.H.; Chang, C.C.; Liang, Y.M.; Shih, C.M.; Muggleton, N.G.; Juan, C.H. Temporal preparation in athletes: A comparison of tennis players and swimmers with sedentary controls. J. Mot. Behav. 2013, 45, 55–63. [Google Scholar] [CrossRef]
- Huang, C.J.; Lin, P.C.; Hung, C.L.; Chang, Y.K.; Hung, T.M. Type of physical exercise and inhibitory function in older adults: An event-related potential study. Psychol. Sport Exerc. 2014, 15, 205–211. [Google Scholar] [CrossRef]
- Tsai, C.L.; Wang, W.L. Exercise-mode-related changes in task-switching performance in the elderly. Front. Behav. Neurosci. 2015, 9, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, C.L.; Wang, C.H.; Pan, C.Y.; Chen, F.C.; Huang, S.Y.; Tseng, Y.T. The effects of different exercise types on visuospatial attention in the elderly. Psychol. Sport Exerc. 2016, 26, 130–138. [Google Scholar] [CrossRef]
- Chang, E.C.H.; Chu, C.H.; Karageorghis, C.I.; Wang, C.C.; Tsai, J.H.C.; Wang, Y.S.; Chang, Y.K. Relationship between mode of sport training and general cognitive performance. J. Sport Health Sci. 2017, 6, 89–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chueh, T.Y.; Huang, C.J.; Hsieh, S.S.; Chen, K.F.; Chang, Y.K.; Hung, T.M. Sports training enhances visuo-spatial cognition regardless of open-closed typology. PeerJ 2017, 5, e3336. [Google Scholar] [CrossRef] [Green Version]
- Yu, Q.; Chan, C.C.H.; Chau, B.; Fu, A.S. Motor skill experience modulates executive control for task switching. Acta Psychol. 2017, 180, 88–97. [Google Scholar] [CrossRef]
- Ballester, R.; Huertas, F.; Molina, E.; Sanabria, D. Sport participation and vigilance in children: Influence of different sport expertise. J. Sport Health Sci. 2018, 7, 497–504. [Google Scholar] [CrossRef]
- Li, D.; Huang, C.J.; Liu, S.C.; Chang, K.H.; Hung, T.M. Exercise type relates to inhibitory and error processing functions in older adults. Aging Neuropsychol. Cogn. 2019, 26, 865–881. [Google Scholar] [CrossRef]
- Ballester, R.; Huertas, F.; Pablos-Abella, C.; Llorens, F.; Pesce, C. Chronic participation in externally paced, but not self-paced sports is associated with the modulation of domain-general cognition. Eur. J. Sport Sci. 2019, 19, 1110–1119. [Google Scholar] [CrossRef]
- Crova, C.; Struzzolino, I.; Marchetti, R.; Masci, I.; Vannozzi, G.; Forte, R.; Pesce, C. Cognitively challenging physical activity benefits executive function in overweight children. J. Sports Sci. 2014, 32, 201–211. [Google Scholar] [CrossRef]
- Gu, Q.; Zou, L.; Loprinzi, P.D.; Quan, M.; Huang, T. Effects of open versus closed skill exercise on cognitive function: A systematic review. Front. Psychol. 2019, 10, 1707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantrelle, J.; Burnett, G.; Loprinzi, P.D. Acute exercise on memory function: Open vs. closed skilled exercise. Health Promot. Perspect. 2020, 10, 123–128. [Google Scholar] [CrossRef] [Green Version]
- Di Russo, F.; Bultrini, A.; Brunelli, S.; Delussu, A.S.; Polidori, L.; Taddei, F.; Traballesi, M.; Spinelli, D. Benefits of sports participation for executive function in disabled athletes. J. Neurotrauma 2010, 27, 2309–2319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamoto, H.; Mori, S. Effects of stimulus–response compatibility in mediating expert performance in baseball players. Brain Res. 2008, 1189, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Artola, A.; Von Frijtag, J.C.; Fermont, P.C.J.; Gispen, W.H.; Schrama, L.H.; Kamal, A.; Spruijt, B.M. Long-lasting modulation of the induction of LTD and LTP in rat hippocampal CA1 by behavioural stress and environmental enrichment. Eur. J. Neurosci. 2006, 23, 261–272. [Google Scholar] [CrossRef] [Green Version]
- Nithianantharajah, J.; Hannan, A.J. Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat. Rev. Neurosci. 2006, 7, 697–709. [Google Scholar] [CrossRef]
- Casey, B.J.; Giedd, J.N.; Thomas, K.M. Structural and functional brain development and its relation to cognitive development. Biol. Psychol. 2000, 54, 241–257. [Google Scholar] [CrossRef] [Green Version]
- Prakash, R.S.; Voss, M.W.; Erickson, K.I.; Kramer, A.F. Physical activity and cognitive vitality. Annu. Rev. Psychol. 2015, 66, 769–797. [Google Scholar] [CrossRef] [Green Version]
Study (First Author, Year) | Country | Sample Size OSE/CSE | Mean Age (y) | Measurement Tool | Cognitive Functions | OSE Activities | CSE Activities | Exercise Experience |
---|---|---|---|---|---|---|---|---|
Giglia, 2011 | IT | 12/10 | 23.38 | Line-length judgment task | Visuospatial attention | Volleyball | Rowing | OSE: 3.4 ± 1.0 h/day CSE: 3.1 ± 0.5 h/day |
Dai, 2013 | CN | 16/16 | 68.73 | Task-switching paradigm | Cognitive flexibility | Table tennis or tennis | Jogging or swimming | Table tennis/tennis: 13.0 ± 5.7 y Jogging/swimming: 11.1 ± 4.5 y Irregular exercise: 0.7 ± 0.6 y |
Wang, 2013a | CN | 20/20 | 20.13 | Stop-signal task | Inhibition | Tennis | Swimming | Tennis: 5.5 ± 2.8 y Swimming: 4.9 ± 1.7 y |
Wang, 2013b | CN | 14/14 | 20.4 | Go/no-go task | Inhibition | Tennis | Swimming | Tennis: 3–11 y Swimming: 2.5–9 y |
Huang, 2014 | CN | 20/20 | 69.43 | Eriksen flanker task | Inhibition | Table tennis, tennis, badminton, etc. | Jogging, swimming, etc. | OSE group: 7.8 ± 1.1 y CSE group: 6.7 ± 2.4 y |
Jacobson and Matthaeus, 2014 | US | 22/17 | 20.13 | D-KEFS tower test, D-KEFS color–word interference test, coding test | Problem-solving, decision-making, inhibition, processing speed | Externally paced exercise | Self-pacedexercise | Exercise group: 1×/week |
Tsai and Wang, 2015 | CN | 21/22 | 65.11 | Task-switching | Cognitive flexibility | Badminton or table tennis | Jogging orswimming | Exercise group: ≥30 min/session, ≥3×/wk, ≥2×/y |
Guo, 2016 | CN | 36/38 | 67.06 | VWMT, VSMT, VMTT | Visuospatial working memory | Table tennis | Jogging or swimming | Exercise group: ≥30 min/session, ≥3×/wk, ≥1×/y |
Tsai, 2016 | CN | 20/20 | 65.53 | Visuospatial attention paradigm | Visuospatial attention | Badminton or table tennis | Jogging orswimming | Exercise group: ≥30 min/session, ≥3×/wk, ≥2×/y |
Ballester, 2017 | ES | 20/20 | 11 | Vigilance task session | Vigilance | Football | Track and field | Exercise group: 4 h/wk, ≥4×/y |
Chang, 2017 | CN | 15/14 | 21.32 | Stroop task, WCST, Tower of London task | Inhibition, working memory, cognitive flexibility, planning | Martial arts training | Marathon running | Martial arts: 8.6 ± 2.3 y Marathon running: 7.8 ± 2.4 y Control group: 0.9 ± 1.7 y |
Chueh, 2017 | CN | 9/9 | 20.6 | NDMT | Visuospatial attention, visuospatial memory | Badminton or table tennis | Swimming, triathlon, or distance running | OSE group: 10.8 ± 2.2 y CSE group: 9.7 ± 3.2 y |
Yu, 2017 | CN | 18/18 | 21.33 | Task-switching paradigm, simple reaction task | Cognitive flexibility, processing speed | Badminton | Track and field | Badminton: 11.3 ± 2.7 y Track and field: 7.9 ± 1.6 y |
Li et al., 2018 | CN | 23/24 | 68.88 | SCWIT, task-switching paradigm | Inhibition, cognitive flexibility | Table tennis or tennis | Jogging or brisk walking | Exercise group: ≥30 min/session, ≥3×/wk, ≥3×/month |
Ballester, 2019 | ES | 22/22 | 23.13 | Psychomotor vigilance task, go/no-go task | Vigilance, inhibition | Football, basketball, volleyball, tennis, martial arts | Track and field, swimming, triathlon, cycling | EP athletes: 4.5 h/wk SP athletes: 5.5 h/wk Non-athletes: 0.7 h/wk |
Study (First Author, Year) | Country | Sample Size OSE/CSE | Mean Age (y) | Measurement Tool | Cognitive Functions | OSE Activities | CSE Activities | Motion Cycle |
---|---|---|---|---|---|---|---|---|
Crova, 2014 | IT | 20/15 | 9.6 | RNG task | Inhibition, working memory | Enhanced PE | Curricular PE | 6 months |
Schmidt, 2015 | CH | 26/28 | 11.33 | N-back task, flanker task | Inhibition, cognitive flexibility, working memory | Team games | Aerobic exercise | 6 weeks |
Tsai, 2017 | CN | 22/21 | 66.28 | Task-switching, n-back task | Cognitive flexibility, working memory | Table tennis | Bike riding or brisk walking/jogging | 6 months |
Hung, 2018 | CN | 20/20 | 23.15 | Task-switching | cognitive flexibility | Badminton | Running | 40 min |
Subfunction | Number of Studies | Effect Size | 95% CI | p-Value |
---|---|---|---|---|
Inhibition | 7 | 0.247 | −0.173, 1.213 | 0.042 |
Cognitive flexibility | 5 | 0.360 | 0.036, 0.923 | 0.013 |
Visuospatial attention | 3 | 0.209 | 0.040, 0.359 | 0.314 |
Processing speed | 2 | 0.103 | 0.098, 0.108 | 0.657 |
Moderator Variable (Categorical) | Level | Number of Studies | Effect Size | 95% CI | p-Value |
---|---|---|---|---|---|
Age | Young adults | 8 | 0.384 | −0.097, 1.213 | 0.002 |
Elderly | 6 | 0.197 | 0.033, 0.923 | 0.105 | |
Study quality | High | 4 | 0.639 | 0.335, 1.213 | 0.000 |
Moderate | 9 | 0.235 | 0.033, 0.923 | 0.025 | |
Low | 2 | 0.034 | −0.097, 0.129 | 0.892 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; Chen, A.; Guo, W.; Zhu, F.; Wang, B. Which Type of Exercise Is More Beneficial for Cognitive Function? A Meta-Analysis of the Effects of Open-Skill Exercise versus Closed-Skill Exercise among Children, Adults, and Elderly Populations. Appl. Sci. 2020, 10, 2737. https://doi.org/10.3390/app10082737
Zhu H, Chen A, Guo W, Zhu F, Wang B. Which Type of Exercise Is More Beneficial for Cognitive Function? A Meta-Analysis of the Effects of Open-Skill Exercise versus Closed-Skill Exercise among Children, Adults, and Elderly Populations. Applied Sciences. 2020; 10(8):2737. https://doi.org/10.3390/app10082737
Chicago/Turabian StyleZhu, Hao, Aiguo Chen, Wei Guo, Fengshu Zhu, and Biye Wang. 2020. "Which Type of Exercise Is More Beneficial for Cognitive Function? A Meta-Analysis of the Effects of Open-Skill Exercise versus Closed-Skill Exercise among Children, Adults, and Elderly Populations" Applied Sciences 10, no. 8: 2737. https://doi.org/10.3390/app10082737
APA StyleZhu, H., Chen, A., Guo, W., Zhu, F., & Wang, B. (2020). Which Type of Exercise Is More Beneficial for Cognitive Function? A Meta-Analysis of the Effects of Open-Skill Exercise versus Closed-Skill Exercise among Children, Adults, and Elderly Populations. Applied Sciences, 10(8), 2737. https://doi.org/10.3390/app10082737