Front-End Amplifiers for Tuning Forks in Quartz Enhanced PhotoAcoustic Spectroscopy
Abstract
:1. Introduction
2. Front-End Electronics Architecture
3. Quartz-Enhanced Photoacoustic Sensor
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hodgkinson, J.; Tatam, R.P. Optical gas sensing: A review. Meas. Sci. Technol. 2013, 24, 012004. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Sahay, P. Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits. Sensors 2009, 9, 8230–8262. [Google Scholar] [CrossRef] [PubMed]
- Fehér, M.; Martin, P.A. Tunable diode laser monitoring of atmospheric trace gas constituents. Spectrochim. Acta A 1995, 51, 1579–1599. [Google Scholar] [CrossRef]
- Zhang, L.; Tian, G.; Li, J.; Yu, B. Applications of absorption spectroscopy using quantum cascade lasers. Appl. Spectrosc. 2014, 68, 1095–1107. [Google Scholar] [CrossRef] [PubMed]
- Strle, D.; Štefane, B.; Zupanič, E.; Trifkovič, M.; Maček, M.; Jakša, G.; Kvasič, I.; Muševič, I. Sensitivity comparison of vapor trace detection of explosives based on chemo-mechanical sensing with optical detection and capacitive sensing with electronic detection. Sensors 2014, 14, 11467–11491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patimisco, P.; Sampaolo, A.; Dong, V.; Tittel, F.K.; Spagnolo, V. Recent advances in quartz enhanced photoacoustic sensing. Appl. Phys. Rev. 2018, 5, 011106. [Google Scholar] [CrossRef]
- Friedt, J.-M.; Carry, É. Introduction to the quartz tuning fork. Am. J. Phys. 2007, 75, 415–422. [Google Scholar] [CrossRef] [Green Version]
- The Quartz Crystal Model and Its Frequencies. Technical Note 32, Rev. A. Statek. Available online: http://statek.com/wp-content/uploads/2018/03/tn32.pdf (accessed on 25 March 2020).
- Patimisco, P.; Sampaolo, A.; Giglio, M.; Mackoviak, V.; Rossmadl, H.; Gross, B.; Cable, A.; Tittel, F.K.; Spagnolo, V. Octupole electrode pattern for tuning forks vibrating at the first overtone mode in quartz-enhanced photoacoustic spectroscopy. Opt. Lett. 2018, 43, 1854–1857. [Google Scholar] [CrossRef]
- Lau, K.S.; Tan, C.H.; Ng, B.K.; Li, K.F.; Tozer, R.C.; David, J.P.R.; Rees, G.J. Excess noise measurement in avalanche photodiodes using a transimpedance amplifier front-end. Meas. Sci. Technol. 2006, 17, 1941–1946. [Google Scholar] [CrossRef]
- Masunaga, M.; Sato, S.; Kuwana, R.; Sugii, N.; Shima, A. 4H-SiC CMOS Transimpedance Amplifier of Gamma-Irradiation Resistance Over 1 MGy. IEEE Trans. Electron Devices 2020, 67, 224–229. [Google Scholar] [CrossRef]
- Demirtaş, M.; Erişmiş, M.A.; Güneş, S. Analysis and design of a transimpedance amplifier based front-end circuit for capacitance measurements. SN Appl. Sci. 2020, 2, 280. [Google Scholar] [CrossRef] [Green Version]
- Asparuhova, K.K.; Gadjeva, E.D. Noise analysis of operational amplifier circuits using MATLAB. In Proceedings of the 27th International Spring Seminar on Electronics Technology: Meeting the Challenges of Electronics Technology Progress, Bankya, Bulgaria, 13–16 May 2004. [Google Scholar]
- Elefante, A.; Giglio, M.; Sampaolo, A.; Menduni, G.; Patimisco, P.; Passaro, V.M.N.; Wu, H.; Rossmadl, H.; Mackowiak, V.; Cable, A.; et al. Dual-Gas Quartz-Enhanced Photoacoustic Sensor for Simultaneous Detection of Methane/Nitrous Oxide and Water Vapor. Anal. Chem. 2019, 91, 12866–12873. [Google Scholar] [CrossRef] [PubMed]
- Sampaolo, A.; Csutak, S.; Patimisco, P.; Giglio, M.; Menduni, G.; Passaro, V.; Tittel, F.K.; Deffenbaugh, M.; Spagnolo, V. Methane, ethane and propane detection using a compact quartz enhanced photoacoustic sensors and a single interband cascade laser. Sens. Act. B Chem. 2019, 282, 952–960. [Google Scholar] [CrossRef]
- Giglio, M.; Zifarelli, A.; Sampaolo, A.; Menduni, G.; Elefante, A.; Blanchard, R.; Pfluegl, C.; Witinski, M.F.; Vakhshoori, D.; Wu, H.; et al. Broadband detection of methane and nitrous oxide using a distributed-feedback quantum cascade laser array and quartz-enhanced photoacoustic sensing. Photoacoustics 2020, 17, 100159. [Google Scholar] [CrossRef] [PubMed]
- Patimisco, P.; Sampaolo, A.; Giglio, M.; Dello Russo, S.; Mackowiak, V.; Rossmadl, H.; Cable, A.; Tittel, F.K.; Spagnolo, V. Tuning forks with optimized geometries for quartz-enhanced photoacoustic spectroscopy. Opt. Exp. 2019, 27, 1401–1415. [Google Scholar] [CrossRef] [Green Version]
- Patimisco, P.; Sampaolo, A.; Zheng, H.; Dong, L.; Tittel, F.K.; Spagnolo, V. Quartz-enhanced photoacoustic spectrophones exploiting custom tuning forks: A review. Adv. Phys. X 2016, 2, 169–187. [Google Scholar] [CrossRef]
- Winkowski, M.; Stacewicz, T. Low noise, open-source QEPAS system with instrumentation amplifier. Sci. Rep. 2019, 9, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Dosch, J.; Hynd, B. Analysis of electrical noise in piezoelectric sensors. In Proceedings of the Modal Analysis Conference 2007: A Conference and Exposition on Structural Dynamics (IMAC XXV), Orlando, FL, USA, 19–22 February 2007. [Google Scholar]
- Tichý, J.; Erhart, J.; Kittinger, E.; Prívratská, J. Principles of Piezoelectricity. In Fundamentals of Piezoelectric Sensorics; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1–14. ISBN 978-3-540-43966-0. [Google Scholar]
- Cerda, R.M. Quartz Crystal Characteristics. In Understanding Quartz Crystals and Oscillators; Artech House: Norwood, MA, USA, 2014; pp. 41–74. ISBN 978-1-60807-118-0. [Google Scholar]
- Starecki, T.; Wieczorek, P.Z. A High Sensitivity Preamplifier for Quartz Tuning Forks in QEPAS (Quartz Enhanced PhotoAcoustic Spectroscopy) Applications. Sensors 2017, 17, 2528. [Google Scholar] [CrossRef] [Green Version]
- Shmaliy, Y.S. One-port noise model of a crystal oscillator. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2004, 51, 25–32. [Google Scholar] [CrossRef]
- Liu, W.; Tsai, C.; Han, T.; Wu, T. An Embedded Common-Mode Suppression Filter for GHz Differential Signals Using Periodic Defected Ground Plane. IEEE Microw. Wirel. Compon. Lett. 2008, 18, 248–250. [Google Scholar]
- Wang, S.; Kong, P.; Lee, F.C. Common Mode Noise Reduction for Boost Converters Using General Balance Technique. IEEE Trans. Power Electron. 2007, 22, 1410–1416. [Google Scholar] [CrossRef]
- Pallas-Areny, R.; Webster, J.G. Common mode rejection ratio in differential amplifiers. IEEE Trans. Instrum. Meas. 1991, 40, 669–676. [Google Scholar] [CrossRef]
- AD623, Single and Dual-Supply, Rail-to-Rail, Low Cost Instrumentation Amplifier. Analog Devices Inc. Available online: https://www.analog.com/media/en/technical-documentation/data-sheets/ad623.pdf (accessed on 25 March 2020).
- AD603, Low Noise, 90 MHz Variable Gain Amplifier. Analog Devices Inc. Available online: https://www.analog.com/media/en/technical-documentation/data-sheets/AD603.pdf (accessed on 25 March 2020).
- Patimisco, P.; Sampaolo, A.; Bidaux, Y.; Bismuto, A.; Schott, M.; Jiang, J.; Muller, A.; Faist, J.; Tittel, F.K.; Spagnolo, V. Purely wavelength- and amplitude-modulated quartz-enhanced photoacoustic spectroscopy. Opt. Exp. 2016, 24, 25943–25954. [Google Scholar] [CrossRef] [PubMed]
- Rothman, L.S.; Gordon, I.E.; Babikov, Y.; Barbe, A.; ChrisBenner, D.; Bernath, P.F.; Birk, M.; Bizzocchi, L.; Boudon, V.; Brown, L.R.; et al. The HITRAN2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2013, 130, 4–50. [Google Scholar] [CrossRef]
Amplifier Architecture | Noise (σ) | SNR @ 1296.48 cm−1 | SNR @ 1296.71 cm−1 |
---|---|---|---|
Single-Ended Transimpedance | 0.0172 | 58 | 26 |
Differential Output Transimpedance | 0.0130 | 77 | 34 |
Differential Input Voltage | 0.0107 | 93 | 41 |
Fully-Differential Voltage | 0.00951 | 105 | 49 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menduni, G.; Sampaolo, A.; Patimisco, P.; Giglio, M.; Dello Russo, S.; Zifarelli, A.; Elefante, A.; Wieczorek, P.Z.; Starecki, T.; Passaro, V.M.N.; et al. Front-End Amplifiers for Tuning Forks in Quartz Enhanced PhotoAcoustic Spectroscopy. Appl. Sci. 2020, 10, 2947. https://doi.org/10.3390/app10082947
Menduni G, Sampaolo A, Patimisco P, Giglio M, Dello Russo S, Zifarelli A, Elefante A, Wieczorek PZ, Starecki T, Passaro VMN, et al. Front-End Amplifiers for Tuning Forks in Quartz Enhanced PhotoAcoustic Spectroscopy. Applied Sciences. 2020; 10(8):2947. https://doi.org/10.3390/app10082947
Chicago/Turabian StyleMenduni, Giansergio, Angelo Sampaolo, Pietro Patimisco, Marilena Giglio, Stefano Dello Russo, Andrea Zifarelli, Arianna Elefante, Piotr Z. Wieczorek, Tomasz Starecki, Vittorio M. N. Passaro, and et al. 2020. "Front-End Amplifiers for Tuning Forks in Quartz Enhanced PhotoAcoustic Spectroscopy" Applied Sciences 10, no. 8: 2947. https://doi.org/10.3390/app10082947
APA StyleMenduni, G., Sampaolo, A., Patimisco, P., Giglio, M., Dello Russo, S., Zifarelli, A., Elefante, A., Wieczorek, P. Z., Starecki, T., Passaro, V. M. N., Tittel, F. K., & Spagnolo, V. (2020). Front-End Amplifiers for Tuning Forks in Quartz Enhanced PhotoAcoustic Spectroscopy. Applied Sciences, 10(8), 2947. https://doi.org/10.3390/app10082947