Infrared Absorption Efficiency Enhancement of the CMOS Compatible Thermopile by the Special Subwavelength Hole Arrays
Abstract
:1. Introduction
2. Simulation Method
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lyshevski, S.E. MEMS and NEMS: Systems, Devices, and Structures; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Kanamori, Y.; Ishimori, M.; Hane, K. High efficient light-emitting diodes with antireflection subwavelength gratings. IEEE Photon. Technol. Lett. 2002, 14, 1064–1066. [Google Scholar] [CrossRef]
- Lee, T.-X.; Chou, C.-C. Scale-dependent light scattering analysis of textured structures on LED light extraction enhancement using hybrid full-wave finite-difference time-domain and ray-tracing methods. Energies 2017, 10, 424. [Google Scholar] [CrossRef] [Green Version]
- Ishimori, M.; Kanamori, Y.; Sasaki, M.; Hane, K. Subwavelength antireflection gratings for light emitting diodes and photodiodes fabricated by fast atom beam etching. Jpn. J. Appl. Phys. 2003, 41, 4346–4349. [Google Scholar] [CrossRef]
- Heine, C.; Morf, R.H. Submicrometer gratings for solar energy applications. Appl. Opt. 1995, 34, 2476–2482. [Google Scholar] [CrossRef] [PubMed]
- Han, K.; Chang, C.H. Numerical modeling of sub-wavelength anti-reflective structures for solar module applications. Nanomaterials 2014, 4, 87–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gombert, A.; Blasi, B.; Buhler, C.; Nitz, P.; Mick, J.; Hossfeld, W.; Niggemann, M. Some application cases and related manufacturing techniques for optically functional microstructures on large areas. Opt. Eng. 2004, 43, 2525. [Google Scholar] [CrossRef]
- Kanamori, Y.; Kikuta, H.; Hane, K. Broadband antireflection gratings for glass substrates fabricated by fast atom beam etching. Jpn. J. Appl. Phys. 2000, 39, L735–L737. [Google Scholar] [CrossRef]
- Ting, C.J.; Chang, F.Y.; Chen, C.F.; Chou, C.P. Fabrication of an antireflective polymer optical film with subwavelength structures using roll-to-roll micro-replication process. J. Micromech. Microeng. 2008, 18, 1–9. [Google Scholar] [CrossRef]
- Burghoorn, M.; Roosen-Melsen, D.; De Riet, J.; Sabik, S.; Vroon, Z.; Yakimets, I.; Buskens, P. Single layer broadband anti-reflective coatings for plastic substrates produced by full wafer and roll-to-roll step-and-flash nano-imprint lithography. Materials 2013, 6, 3710–3726. [Google Scholar] [CrossRef] [PubMed]
- Ebbesen, T.W.; Lezec, H.J.; Ghaemi, H.F.; Thio, T.; Wolff, P.A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 1998, 391, 667–669. [Google Scholar] [CrossRef]
- Ghaemi, H.F.; Thio, T.; Grupp, D.E.; Ebbesen, T.W.; Lezec, H.J. Surface plasmons enhance optical transmission through subwavelength holes. Phys. Rev. B 1998, 58, 6779. [Google Scholar] [CrossRef] [Green Version]
- Salomon, L.; Grillot, F.; Zayats, A.V.; de Fornel, F. Near-Field Distribution of Optical Transmission of Periodic Subwavelength Holes in a Metal Film. Phys. Rev. Lett. 2001, 86, 1110. [Google Scholar] [CrossRef] [PubMed]
- Rivas, J.G.; Schotsch, C.; Bolivar, P.H.; Kurz, H. Enhanced transmission of THz radiation through subwavelength holes. Phys. Rev. B 2003, 68, 201306. [Google Scholar] [CrossRef]
- Janke, C.; Rivas, J.G.; Schotch, C.; Beckmann, L.; Bolivar, P.H.; Kurz, H. Optimization of enhanced terahertz transmission through arrays of subwavelength apertures. Phys. Rev. B 2004, 69, 205314. [Google Scholar] [CrossRef]
- Shen, C.H.; Yeh, Y.Y.; Chen, C.F. A Thermopile Device with Subwavelength Structure by CMOS-MEMS technology. Appl. Sci. 2019, 9, 5118. [Google Scholar] [CrossRef] [Green Version]
- Yee, K. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 1966, 14, 302–307. [Google Scholar]
- Taflove, A.; Hagness, S.C. Computational Electrodynamics: The Finite-Difference Time-Domain Method; Artech House: Norwood, MA, USA, 2005. [Google Scholar]
ESCS Type | Geometric Parameters | Relative IAE | |
---|---|---|---|
(μm) | (μm) | ||
One RC | 11.2 | 1.7 | 1.128 |
Two RCs | 4.6 | 2.1 | 1.127 |
Three RCs | 2.6 | 1.8 | 1.144 |
One EC | 11.8 | 1.3 | 1.130 |
Two ECs | 5.2 | 1.7 | 1.132 |
Three ECs | 3.2 | 1.5 | 1.152 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeh, Y.-Y.; Shen, C.-H.; Chen, C.-F. Infrared Absorption Efficiency Enhancement of the CMOS Compatible Thermopile by the Special Subwavelength Hole Arrays. Appl. Sci. 2020, 10, 2966. https://doi.org/10.3390/app10082966
Yeh Y-Y, Shen C-H, Chen C-F. Infrared Absorption Efficiency Enhancement of the CMOS Compatible Thermopile by the Special Subwavelength Hole Arrays. Applied Sciences. 2020; 10(8):2966. https://doi.org/10.3390/app10082966
Chicago/Turabian StyleYeh, Yun-Ying, Chih-Hsiung Shen, and Chi-Feng Chen. 2020. "Infrared Absorption Efficiency Enhancement of the CMOS Compatible Thermopile by the Special Subwavelength Hole Arrays" Applied Sciences 10, no. 8: 2966. https://doi.org/10.3390/app10082966
APA StyleYeh, Y.-Y., Shen, C.-H., & Chen, C.-F. (2020). Infrared Absorption Efficiency Enhancement of the CMOS Compatible Thermopile by the Special Subwavelength Hole Arrays. Applied Sciences, 10(8), 2966. https://doi.org/10.3390/app10082966