Individual Topological Analysis of Synchronization-Based Brain Connectivity
Abstract
:1. Introduction
2. Materials
fMRI Data
3. Methods
3.1. Synchronization in Phase Space
- a sine wave synchronized with itself throughout the observation period 0–T;
- a sine wave and a second sine wave fully synchronized during half of the observation period 0–;
- a sine wave and a second intermittently synchronized sine wave during a first observation interval 0– and a second observation interval –.
3.2. Analysis of fMRI Synchronization-Based Connectivity
3.2.1. Identification and Analysis of Functional Modules
3.2.2. Identification of Hub Nodes
- the participation coefficient is defined as:
- the within-module degree z score for each node is computed as:
4. Results and Discussions
4.1. Network Structure
4.2. Modularity Analysis
4.3. Hub Identification
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Rosenblum, M.G.; Pikovsky, A.S.; Kurths, J. Synchronization approach to analysis of biological systems. Fluct. Noise Lett. 2004, 4, L53–L62. [Google Scholar] [CrossRef] [Green Version]
- Zou, Y.; Donner, R.V.; Marwan, N.; Donges, J.F.; Kurths, J. Complex network approaches to nonlinear time series analysis. Phys. Rep. 2019, 787, 1–97. [Google Scholar] [CrossRef]
- Boccaletti, S.; Kurths, J.; Osipov, G.; Valladares, D.; Zhou, C. The synchronization of chaotic systems. Phys. Rep. 2002, 366, 1–101. [Google Scholar] [CrossRef]
- Faure, P.; Korn, H. Is there chaos in the brain? I. Concepts of nonlinear dynamics and methods of investigation. Comptes Rendus de l’Académie des Sciences-Series III-Sciences de la Vie 2001, 324, 773–793. [Google Scholar] [CrossRef]
- Stephan, K.E.; Kasper, L.; Harrison, L.M.; Daunizeau, J.; den Ouden, H.E.; Breakspear, M.; Friston, K.J. Nonlinear dynamic causal models for fMRI. Neuroimage 2008, 42, 649–662. [Google Scholar] [CrossRef] [Green Version]
- Rabinovich, M.I.; Muezzinoglu, M. Nonlinear dynamics of the brain: emotion and cognition. Phys. Uspekhi 2010, 53, 357. [Google Scholar] [CrossRef]
- Amoroso, N.; La Rocca, M.; Bruno, S.; Maggipinto, T.; Monaco, A.; Bellotti, R.; Tangaro, S. Multiplex networks for early diagnosis of Alzheimer’s disease. Front. Aging Neurosci. 2018, 10, 365. [Google Scholar] [CrossRef]
- Lella, E.; Amoroso, N.; Lombardi, A.; Maggipinto, T.; Tangaro, S.; Bellotti, R.; Initiative, A.D.N. Communicability disruption in Alzheimer’s disease connectivity networks. J. Complex Netw. 2019, 7, 83–100. [Google Scholar] [CrossRef]
- Duarte-Carvajalino, J.M.; Jahanshad, N.; Lenglet, C.; McMahon, K.L.; De Zubicaray, G.I.; Martin, N.G.; Wright, M.J.; Thompson, P.M.; Sapiro, G. Hierarchical topological network analysis of anatomical human brain connectivity and differences related to sex and kinship. Neuroimage 2012, 59, 3784–3804. [Google Scholar] [CrossRef] [Green Version]
- Ellis, C.T.; Lesnick, M.; Henselman-Petrusek, G.; Keller, B.; Cohen, J.D. Feasibility of topological data analysis for event-related fMRI. Netw. Neurosci. 2019, 3, 695–706. [Google Scholar] [CrossRef]
- Bernstein, A.; Burnaev, E.; Sharaev, M.; Kondrateva, E.; Kachan, O. Topological data analysis in computer vision. In Proceedings of the Twelfth International Conference on Machine Vision (ICMV 2019), Amsterdam, The Netherlands, 16–18 November 2019; International Society for Optics and Photonics: Bellingham, WA, USA, 2020; Volume 11433, p. 114332. [Google Scholar]
- Bullmore, E.; Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 2009, 10, 186–198. [Google Scholar] [CrossRef] [PubMed]
- Stam, C. Characterization of anatomical and functional connectivity in the brain: a complex networks perspective. Int. J. Psychophysiol. 2010, 77, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Callicott, J.H.; Mattay, V.S.; Bertolino, A.; Finn, K.; Coppola, R.; Frank, J.A.; Goldberg, T.E.; Weinberger, D.R. Physiological characteristics of capacity constraints in working memory as revealed by functional MRI. Cereb. Cortex 1999, 9, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Van Den Heuvel, M.P.; Pol, H.E.H. Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur. Neuropsychopharmacol. 2010, 20, 519–534. [Google Scholar] [CrossRef] [PubMed]
- Friston, K.J. Functional and effective connectivity: A review. Brain Connect. 2011, 1, 13–36. [Google Scholar] [CrossRef] [PubMed]
- Fiecas, M.; Ombao, H.; Van Lunen, D.; Baumgartner, R.; Coimbra, A.; Feng, D. Quantifying temporal correlations: A test–retest evaluation of functional connectivity in resting-state fMRI. NeuroImage 2013, 65, 231–241. [Google Scholar] [CrossRef]
- Freeman, W.J.; Holmes, M.D.; Burke, B.C.; Vanhatalo, S. Spatial spectra of scalp EEG and EMG from awake humans. Clin. Neurophysiol. 2003, 114, 1053–1068. [Google Scholar] [CrossRef] [Green Version]
- Mumtaz, W.; Ali, S.S.A.; Yasin, M.A.M.; Malik, A.S. A machine learning framework involving EEG-based functional connectivity to diagnose major depressive disorder (MDD). Med. Biol. Eng. Comput. 2018, 56, 233–246. [Google Scholar] [CrossRef]
- Friston, K.J.; Harrison, L.; Penny, W. Dynamic causal modelling. Neuroimage 2003, 19, 1273–1302. [Google Scholar] [CrossRef]
- Runge, J.; Heitzig, J.; Marwan, N.; Kurths, J. Quantifying causal coupling strength: A lag-specific measure for multivariate time series related to transfer entropy. Phys. Rev. E 2012, 86, 061121. [Google Scholar] [CrossRef] [Green Version]
- Lombardi, A.; Tangaro, S.; Bellotti, R.; Bertolino, A.; Blasi, G.; Pergola, G.; Taurisano, P.; Guaragnella, C. A novel synchronization-based approach for functional connectivity analysis. Complexity 2017, 2017, 7190758. [Google Scholar] [CrossRef] [Green Version]
- Lombardi, A.; Lella, E.; Diacono, D.; Amoroso, N.; Monaco, A.; Bellotti, R.; Tangaro, S. Cross Recurrence Quantitative Analysis of Functional Magnetic Resonance Imaging. In Image Processing; Lecture Notes in Computational Vision and Biomechanics 34; Springer: Berlin/Heidelberg, Germany, 2019; pp. 86–92. [Google Scholar]
- Lombardi, A.; Amoroso, N.; Diacono, D.; Lella, E.; Bellotti, R.; Tangaro, S. Age related topological analysis of synchronization-based functional connectivity. In Proceedings of the International Conference on Complex Networks and Their Applications, Cambridge, UK, 11–13 December 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 652–662. [Google Scholar]
- Lombardi, A.; Guaragnella, C.; Amoroso, N.; Monaco, A.; Fazio, L.; Taurisano, P.; Pergola, G.; Blasi, G.; Bertolino, A.; Bellotti, R.; et al. Modelling cognitive loads in schizophrenia by means of new functional dynamic indexes. NeuroImage 2019, 195, 150–164. [Google Scholar] [CrossRef]
- Smitha, K.; Akhil Raja, K.; Arun, K.; Rajesh, P.; Thomas, B.; Kapilamoorthy, T.; Kesavadas, C. Resting state fMRI: A review on methods in resting state connectivity analysis and resting state networks. Neuroradiol. J. 2017, 30, 305–317. [Google Scholar] [CrossRef] [PubMed]
- Van Den Heuvel, M.P.; Sporns, O. Rich-club organization of the human connectome. J. Neurosci. 2011, 31, 15775–15786. [Google Scholar] [CrossRef] [PubMed]
- Harriger, L.; Van Den Heuvel, M.P.; Sporns, O. Rich club organization of macaque cerebral cortex and its role in network communication. PLoS ONE 2012, 7, e46497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van den Heuvel, M.P.; Kahn, R.S.; Goñi, J.; Sporns, O. High-cost, high-capacity backbone for global brain communication. Proc. Natl. Acad. Sci. USA 2012, 109, 11372–11377. [Google Scholar] [CrossRef] [Green Version]
- Fulcher, B.D.; Fornito, A. A transcriptional signature of hub connectivity in the mouse connectome. Proc. Natl. Acad. Sci. USA 2016, 113, 1435–1440. [Google Scholar] [CrossRef] [Green Version]
- Mišić, B.; Sporns, O.; McIntosh, A.R. Communication efficiency and congestion of signal traffic in large-scale brain networks. PLoS Comput. Biol. 2014, 10, e1003427. [Google Scholar] [CrossRef]
- Fornito, A.; Bullmore, E.T. Reconciling abnormalities of brain network structure and function in schizophrenia. Curr. Opin. Neurobiol. 2015, 30, 44–50. [Google Scholar] [CrossRef]
- Fornito, A.; Zalesky, A.; Breakspear, M. The connectomics of brain disorders. Nat. Rev. Neurosci. 2015, 16, 159–172. [Google Scholar] [CrossRef]
- Dubois, J.; Adolphs, R. Building a science of individual differences from fMRI. Trends Cogn. Sci. 2016, 20, 425–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliver, I.; Hlinka, J.; Kopal, J.; Davidsen, J. Quantifying the Variability in Resting-State Networks. Entropy 2019, 21, 882. [Google Scholar] [CrossRef] [Green Version]
- Zuo, X.N.; Anderson, J.S.; Bellec, P.; Birn, R.M.; Biswal, B.B.; Blautzik, J.; Breitner, J.C.; Buckner, R.L.; Calhoun, V.D.; Castellanos, F.X.; et al. An open science resource for establishing reliability and reproducibility in functional connectomics. Sci. Data 2014, 1, 140049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tzourio-Mazoyer, N.; Landeau, B.; Papathanassiou, D.; Crivello, F.; Etard, O.; Delcroix, N.; Mazoyer, B.; Joliot, M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002, 15, 273–289. [Google Scholar] [CrossRef] [PubMed]
- Takens, F. Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence, Warwick 1980; Springer: Berlin/Heidelberg, Germany, 1981; pp. 366–381. [Google Scholar]
- Fraser, A.M.; Swinney, H.L. Independent coordinates for strange attractors from mutual information. Phys. Rev. A 1986, 33, 1134. [Google Scholar] [CrossRef]
- Kennel, M.B.; Brown, R.; Abarbanel, H.D. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 1992, 45, 3403. [Google Scholar] [CrossRef] [Green Version]
- Marwan, N.; Kurths, J. Nonlinear analysis of bivariate data with cross recurrence plots. Phys. Lett. A 2002, 302, 299–307. [Google Scholar] [CrossRef] [Green Version]
- Marwan, N.; Romano, M.C.; Thiel, M.; Kurths, J. Recurrence plots for the analysis of complex systems. Phys. Rep. 2007, 438, 237–329. [Google Scholar] [CrossRef]
- Marwan, N.; Thiel, M.; Nowaczyk, N.R. Cross recurrence plot based synchronization of time series. arXiv 2002, arXiv:physics/0201062. [Google Scholar]
- Welch, P. The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 1967, 15, 70–73. [Google Scholar] [CrossRef] [Green Version]
- Blondel, V.D.; Guillaume, J.L.; Lambiotte, R.; Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008, 2008, P10008. [Google Scholar] [CrossRef] [Green Version]
- Alexander-Bloch, A.; Lambiotte, R.; Roberts, B.; Giedd, J.; Gogtay, N.; Bullmore, E. The discovery of population differences in network community structure: new methods and applications to brain functional networks in schizophrenia. Neuroimage 2012, 59, 3889–3900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuncheva, L.I.; Hadjitodorov, S.T. Using diversity in cluster ensembles. In Proceedings of the 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No. 04CH37583), The Hague, The Netherlands, 10–13 October 2004; Volume 2, pp. 1214–1219. [Google Scholar]
- Rubinov, M.; Sporns, O. Complex network measures of brain connectivity: Uses and interpretations. Neuroimage 2010, 52, 1059–1069. [Google Scholar] [CrossRef] [PubMed]
- Guimera, R.; Amaral, L.A.N. Functional cartography of complex metabolic networks. Nature 2005, 433, 895–900. [Google Scholar] [CrossRef] [Green Version]
- Hilger, K.; Ekman, M.; Fiebach, C.J.; Basten, U. Intelligence is associated with the modular structure of intrinsic brain networks. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Bertolero, M.A.; Yeo, B.T.; Bassett, D.S.; D’Esposito, M. A mechanistic model of connector hubs, modularity and cognition. Nat. Hum. Behav. 2018, 2, 765–777. [Google Scholar] [CrossRef]
- Braun, U.; Schäfer, A.; Walter, H.; Erk, S.; Romanczuk-Seiferth, N.; Haddad, L.; Schweiger, J.I.; Grimm, O.; Heinz, A.; Tost, H.; et al. Dynamic reconfiguration of frontal brain networks during executive cognition in humans. Proc. Natl. Acad. Sci. USA 2015, 112, 11678–11683. [Google Scholar] [CrossRef] [Green Version]
- Buckner, R.L.; Andrews-Hanna, J.R.; Schacter, D.L. The brain’s default network: Anatomy, function, and relevance to disease. Ann. N. Y. Acad. Sci. 2008, 1124, 1–38. [Google Scholar] [CrossRef] [Green Version]
- Thomas Yeo, B.; Krienen, F.M.; Sepulcre, J.; Sabuncu, M.R.; Lashkari, D.; Hollinshead, M.; Roffman, J.L.; Smoller, J.W.; Zöllei, L.; Polimeni, J.R.; et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 2011, 106, 1125–1165. [Google Scholar] [CrossRef]
- van den Heuvel, M.P.; Sporns, O. Network hubs in the human brain. Trends Cogn. Sci. 2013, 17, 683–696. [Google Scholar] [CrossRef]
- van den Heuvel, M.I.; Turk, E.; Manning, J.H.; Hect, J.; Hernandez-Andrade, E.; Hassan, S.S.; Romero, R.; van den Heuvel, M.P.; Thomason, M.E. Hubs in the human fetal brain network. Dev. Cogn. Neurosci. 2018, 30, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Oldham, S.; Fornito, A. The development of brain network hubs. Dev. Cogn. Neurosci. 2019, 36, 100607. [Google Scholar] [CrossRef] [PubMed]
- Buckner, R.L.; Krienen, F.M.; Castellanos, A.; Diaz, J.C.; Yeo, B.T. The organization of the human cerebellum estimated by intrinsic functional connectivity. J. Neurophysiol. 2011, 106, 2322–2345. [Google Scholar] [CrossRef] [PubMed]
- Power, J.D.; Schlaggar, B.L.; Lessov-Schlaggar, C.N.; Petersen, S.E. Evidence for hubs in human functional brain networks. Neuron 2013, 79, 798–813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sporns, O.; Honey, C.J.; Kötter, R. Identification and classification of hubs in brain networks. PLoS ONE 2007, 2, e1049. [Google Scholar] [CrossRef] [PubMed]
Macro Region | ROI | SYNC | Pearson | Coherence | ||||||
---|---|---|---|---|---|---|---|---|---|---|
PH | CH | KH | PH | CH | KH | PH | CH | KH | ||
Frontal Lobe | SFGdor.L (3) | ✓ | ✓ | |||||||
ORBinf.L (15) | ✓ | ✓ | ||||||||
ORBinf.R (16) | ✓ | ✓ | ||||||||
ROL.L (17) | ✓ | ✓ | ✓ | |||||||
ROL.R (18) | ✓ | ✓ | ✓ | |||||||
SFGmed.L (23) | ✓ | ✓ | ||||||||
SFGmed.R (24) | ✓ | ✓ | ||||||||
Insula and Cingulate Gyri | INS.L (29) | ✓ | ✓ | |||||||
INS.R (30) | ✓ | ✓ | ||||||||
DCG.L (33) | ✓ | |||||||||
DCG.R (34) | ✓ | |||||||||
Occipital Lobe | CAL.L (43) | ✓ | ✓ | |||||||
CAL.R (44) | ✓ | ✓ | ||||||||
LING.L (47) | ✓ | ✓ | ✓ | |||||||
LING.R (48) | ✓ | ✓ | ✓ | |||||||
Parietal Lobe | PoCG.L (57) | ✓ | ✓ | |||||||
PoCG.R (58) | ✓ | ✓ | ||||||||
PCUN.L (67) | ✓ | |||||||||
PCUN.R (68) | ✓ | |||||||||
Temporal Lobe | FFG.L (55) | ✓ | ||||||||
FFG.R (56) | ✓ | |||||||||
HES.L (79) | ✓ | |||||||||
HES.R (80) | ✓ | |||||||||
STG.L (81) | ✓ | ✓ | ||||||||
STG.R (82) | ✓ | ✓ | ||||||||
MTG.L (85) | ✓ | ✓ | ✓ | |||||||
MTG.R (86) | ✓ | ✓ | ✓ | |||||||
ITG.L (89) | ✓ | |||||||||
ITG.R (90) | ✓ | |||||||||
Posterior Fossa | CRBLCrus1.L (91) | ✓ | ✓ | |||||||
CRBLCrus1.R (92) | ✓ | ✓ | ||||||||
CRBLCrus2.L (93) | ✓ | |||||||||
CRBLCrus2.R (94) | ✓ | ✓ | ||||||||
CRBL6.L (99) | ✓ | ✓ | ✓ | |||||||
CRBL6.L (100) | ✓ | ✓ | ✓ |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lombardi, A.; Amoroso, N.; Diacono, D.; Monaco, A.; Tangaro, S.; Bellotti, R. Individual Topological Analysis of Synchronization-Based Brain Connectivity. Appl. Sci. 2020, 10, 3275. https://doi.org/10.3390/app10093275
Lombardi A, Amoroso N, Diacono D, Monaco A, Tangaro S, Bellotti R. Individual Topological Analysis of Synchronization-Based Brain Connectivity. Applied Sciences. 2020; 10(9):3275. https://doi.org/10.3390/app10093275
Chicago/Turabian StyleLombardi, Angela, Nicola Amoroso, Domenico Diacono, Alfonso Monaco, Sabina Tangaro, and Roberto Bellotti. 2020. "Individual Topological Analysis of Synchronization-Based Brain Connectivity" Applied Sciences 10, no. 9: 3275. https://doi.org/10.3390/app10093275
APA StyleLombardi, A., Amoroso, N., Diacono, D., Monaco, A., Tangaro, S., & Bellotti, R. (2020). Individual Topological Analysis of Synchronization-Based Brain Connectivity. Applied Sciences, 10(9), 3275. https://doi.org/10.3390/app10093275