Numerical Study of Multilayer Planar Film Structures for Ideal Absorption in the Entire Solar Spectrum
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials, Structure, and Methods
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Atchuta, S.R.; Sakthivel, S.; Barshilia, H.C. Transition metal based CuxNiyCoz-x-yO4 spinel composite solar selective absorber coatings for concentrated solar thermal applications. Sol. Energ Mater. Sol. Cells 2019, 189, 226–232. [Google Scholar] [CrossRef]
- Chen, J.; Feng, J.; Li, Z.; Xu, P.; Wang, X.; Yin, W.; Wang, M.; Ge, X.; Yin, Y. Space-Confined Seeded Growth of Black Silver Nanostructures for Solar Steam Generation. Nano Lett. 2018, 19, 400–407. [Google Scholar] [CrossRef]
- Van Embden, J.; Della Gaspera, E. Ultrathin Solar Absorber Layers of Silver Bismuth Sulfide from Molecular Precursors. ACS Appl. Mater. Interfaces 2019, 11, 16674–16682. [Google Scholar] [CrossRef]
- Rephaeli, E.; Fan, S. Tungsten black absorber for solar light with wide angular operation range. Appl. Phys. Lett. 2008, 92, 211107. [Google Scholar] [CrossRef]
- Chen, C.L.; Zhou, L.; Yu, J.Y.; Wang, Y.X.; Nie, S.M. Dual functional asymmetric plasmonic structures for solar water purification and pollution detection. Nano Energy 2018, 51, 451–456. [Google Scholar] [CrossRef]
- Lin, L.; Peng, X.; Wang, M.; Scarabelli, L.; Mao, Z.; Liz-Marzán, L.M.; Becker, M.F.; Zheng, Y. Light-Directed Reversible Assembly of Plasmonic Nanoparticles Using Plasmon-Enhanced Thermophoresis. ACS Nano 2016, 10, 9659–9668. [Google Scholar] [CrossRef]
- Tan, F.; Wang, N.; Lei, D.Y.; Yu, W.; Zhang, X. Plasmonic Black Absorbers for Enhanced Photocurrent of Visible-Light Photocatalysis. Adv. Opt. Mater. 2017, 5, 1600399. [Google Scholar] [CrossRef]
- Ryu, Y.; Kim, C.; Ahn, J.; Urbas, A.M.; Park, W.; Kim, K. Material-Versatile Ultrabroadband Light Absorber with Self-Aggregated Multiscale Funnel Structures. ACS Appl. Mater. Interfaces 2018, 10, 29884–29892. [Google Scholar] [CrossRef]
- Lin, H.; Sturmberg, B.C.P.; Lin, K.; Yang, Y.; Zheng, X.; Chong, T.K.; de Sterke, C.M.; Jia, B. A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light. Nat. Photonics 2019, 13, 270–276. [Google Scholar] [CrossRef]
- Cong, J.; Zhou, Z.; Yun, B.; Lv, L.; Yao, H.; Fu, Y.; Ren, N. Broadband visible-light absorber via hybridization of propagating surface plasmon. Opt. Lett. 2016, 41, 1965–1968. [Google Scholar] [CrossRef]
- Aydin, K.; Ferry, V.E.; Briggs, R.M.; Atwater, H.A. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat. Commun. 2011, 2, 1–7. [Google Scholar] [CrossRef]
- Tang, B.; Zhu, Y.; Zhou, X.; Huang, L.; Lang, X. Wide-Angle Polarization-Independent Broadband Absorbers Based on Concentric Multisplit Ring Arrays. IEEE Photonics J. 2017, 9, 1–7. [Google Scholar] [CrossRef]
- Li, Z.; Palacios, E.; Butun, S.; Kocer, H.; Aydin, K. Omnidirectional, broadband light absorption using large-area, ultrathin lossy metallic film coatings. Sci. Rep. 2015, 5, 15137. [Google Scholar] [CrossRef]
- Wan, C.; Ho, Y.; Nunez-Sanchez, S.; Chen, L.; Lopez-Garcia, M.; Pugh, J.; Zhu, B.; Cryan, M.J. A selective metasurface absorber with an amorphous carbon interlayer for solar thermal applications. Nano Energy 2016, 26, 392–397. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Liu, Y.; Xu, Z.; Yu, Z.; Yu, L.; Chen, L.; Liu, C.; Li, R.; Ma, R.; Zhang, J.; et al. Numerical Study of the Wide-angle Polarization-Independent Ultra-Broadband Efficient Selective Solar Absorber in the Entire Solar Spectrum. Sol. RRL 2017, 1, 1700049. [Google Scholar] [CrossRef]
- Zhao, J.; Yu, X.; Yang, X.; Xiang, Q.; Duan, H.; Yu, Y. Polarization independent subtractive color printing based on ultrathin hexagonal nanodisk-nanohole hybrid structure arrays. Opt. Express 2017, 25, 23137–23145. [Google Scholar] [CrossRef]
- Chen, J.; Jin, Y.; Chen, P.; Shan, Y.; Xu, J.; Kong, F.; Shao, J. Polarization-independent almost-perfect absorber controlled from narrowband to broadband. Opt. Express 2017, 25, 13916–13922. [Google Scholar] [CrossRef]
- Moghimi, M.J.; Lin, G.; Jiang, H. Broadband and Ultrathin Infrared Stealth Sheets. Adv. Eng. Mater. 2018, 20, 1800038. [Google Scholar] [CrossRef]
- Wu, D.; Liu, C.; Liu, Y.; Yu, L.; Yu, Z.; Chen, L.; Ma, R.; Ye, H. Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region. Opt. Lett. 2017, 42, 450–453. [Google Scholar] [CrossRef]
- Yang, C.; Ji, C.; Shen, W.; Lee, K.; Zhang, Y.; Liu, X.; Guo, L.J. Compact Multilayer Film Structures for Ultrabroadband, Omnidirectional, and Efficient Absorption. ACS Photonics 2016, 3, 590–596. [Google Scholar] [CrossRef]
- Hu, E.; Liu, X.; Yao, Y.; Zang, K.; Tu, Z.; Jiang, A.; Yu, K.; Zheng, J.; Wei, W.; Zheng, Y.; et al. Multilayered metal-dielectric film structure for highly efficient solar selective absorption. Mater. Res. Express 2018, 5, 66428. [Google Scholar] [CrossRef]
- Deng, H.; Li, Z.; Stan, L.; Rosenmann, D.; Czaplewski, D.; Gao, J.; Yang, X. Broadband perfect absorber based on one ultrathin layer of refractory metal. Opt. Lett. 2015, 40, 2592–2595. [Google Scholar] [CrossRef]
- García, G.; Sánchez-Palencia, P.; Palacios, P.; Wahnón, P. Transition Metal-Hyperdoped InP Semiconductors as Efficient Solar Absorber Materials. Nanomaterials 2020, 10, 283. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Chen, Z.; Yang, H.; Yi, Z.; Chen, X.; Yao, W.; Duan, T.; Wu, P.; Li, G.; Yi, Y. Tunable Broadband Solar Energy Absorber Based on Monolayer Transition Metal Dichalcogenides Materials Using Au Nanocubes. Nanomaterials 2020, 10, 257. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Chen, W.; Zheng, J.-C.; Chen, Y.-S.; Yang, C.-F. Wide-Angle Polarization-Independent Ultra-Broadband Absorber from Visible to Infrared. Nanomaterials 2020, 10, 27. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Chen, W.; Ma, W.; Yu, G.; Zheng, J.; Chen, Y.; Yang, C. Ultra-Broadband Infrared Absorbers Using Iron Thin Layers. IEEE Access 2020, 8, 43407–43412. [Google Scholar] [CrossRef]
- Zhu, P.; Jay Guo, L. High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack. Appl. Phys. Lett. 2012, 101, 241116. [Google Scholar] [CrossRef]
- Lei, L.; Li, S.; Huang, H.; Tao, K.; Xu, P. Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial. Opt. Express 2018, 26, 5686–5693. [Google Scholar] [CrossRef]
- Chen, H.-P.; Lee, C.-T.; Liao, W.-B.; Chang, Y.-C.; Chen, Y.-S.; Li, M.-C.; Lee, C.-C.; Kuo, C.-C. Analysis of High-Efficiency Mo-Based Solar Selective Absorber by Admittance Locus Method. Coatings 2019, 9, 256. [Google Scholar] [CrossRef] [Green Version]
- Pang, X.; Wei, Q.; Zhou, J.; Ma, H. High-Temperature Tolerance in Multi-Scale Cermet Solar-Selective Absorbing Coatings Prepared by Laser Cladding. Materials 2018, 11, 1037. [Google Scholar] [CrossRef] [Green Version]
- Zou, Y.; Cao, J.; Gong, X.; Qian, R.; An, Z. Ultrathin and Electrically Tunable Metamaterial with Nearly Perfect Absorption in Mid-Infrared. Appl. Sci. 2019, 9, 3358. [Google Scholar] [CrossRef] [Green Version]
- Rance, O.; Lepage, A.C.; Begaud, X.; Elis, K.; Capet, N. Oblique Wide-Angle Multi-Sector Metamaterial Absorber for Space Applications. Appl. Sci. 2019, 9, 3425. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Lang, T.; Shen, T.; Shen, C.; Hong, Z.; Lu, C. Numerical Study of an Ultra-Broadband All-Silicon Terahertz Absorber. Appl. Sci. 2020, 10, 436. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Zhang, Z.; Wen, K.; Li, G.; He, J.; Yang, J. A Triple-Band Hybridization Coherent Perfect Absorber Based on Graphene Metamaterial. Appl. Sci. 2020, 10, 1750. [Google Scholar] [CrossRef] [Green Version]
- Shang, A.; Li, X. Photovoltaic Devices: Opto-Electro-Thermal Physics and Modeling. Adv. Mater. 2017, 29, 1603492. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wu, K.; Giannini, V.; Li, X. Planar Hot-Electron Photodetection with Tamm Plasmons. ACS Nano 2017, 11, 1719–1727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Material | Ag | Au | Fe | Ti | Cr |
---|---|---|---|---|---|
Melting point (K) | 1234 | 1337 | 1811 | 1941 | 2180 |
Reference | Bandwidth (nm) | Structure | Polarization Independent | Materials | Average Absorption |
---|---|---|---|---|---|
[19] | 400~2000 | Patterned structure | NO | non-noble material | ~96.4% |
[13] | 400~800 | Planar film structure | YES | non-noble material | ~99.5% |
[9] | 300~2500 | Patterned structure | YES | graphene | ~85% |
[15] | 400~1520 | Patterned structure | YES | noble material | ~99% |
this work | 300~2500 | Planar film structure | YES | non-noble material | 96.6% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Liu, J.; Ma, W.-Z.; Yu, G.-X.; Chen, J.-Q.; Cai, H.-Y.; Yang, C.-F. Numerical Study of Multilayer Planar Film Structures for Ideal Absorption in the Entire Solar Spectrum. Appl. Sci. 2020, 10, 3276. https://doi.org/10.3390/app10093276
Chen W, Liu J, Ma W-Z, Yu G-X, Chen J-Q, Cai H-Y, Yang C-F. Numerical Study of Multilayer Planar Film Structures for Ideal Absorption in the Entire Solar Spectrum. Applied Sciences. 2020; 10(9):3276. https://doi.org/10.3390/app10093276
Chicago/Turabian StyleChen, Wei, Jing Liu, Wen-Zhuang Ma, Gao-Xiang Yu, Jing-Qian Chen, Hao-Yuan Cai, and Cheng-Fu Yang. 2020. "Numerical Study of Multilayer Planar Film Structures for Ideal Absorption in the Entire Solar Spectrum" Applied Sciences 10, no. 9: 3276. https://doi.org/10.3390/app10093276
APA StyleChen, W., Liu, J., Ma, W. -Z., Yu, G. -X., Chen, J. -Q., Cai, H. -Y., & Yang, C. -F. (2020). Numerical Study of Multilayer Planar Film Structures for Ideal Absorption in the Entire Solar Spectrum. Applied Sciences, 10(9), 3276. https://doi.org/10.3390/app10093276