How Should the Transition from Underwater to Surface Swimming Be Performed by Competitive Swimmers?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Data Acquisition and Processing
2.4. Variables Definition
2.5. Data Analysis
3. Results
4. Discussion
4.1. Pre-Transition Phase
4.2. Transition Phase
4.3. Study Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Veiga, S.; Cala, A.; Mallo, J.; Navarro, E. A new procedure for race analysis in swimming based on individual distance measurements. J. Sports Sci. 2013, 31, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Veiga, S.; Roig, A. Effect of the starting and turning performances on the subsequent swimming parameters of elite swimmers. Sport. Biomech. 2017, 16, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Veiga, S.; Roig, A.; Gómez-Ruano, M.A. Do faster swimmers spend longer underwater than slower swimmers at World Championships? Eur. J. Sport Sci. 2016, 16, 919–926. [Google Scholar] [CrossRef] [PubMed]
- Nicolas, G.; Bideau, B. A kinematic and dynamic comparison of surface and underwater displacement in high level monofin swimming. Hum. Mov. Sci. 2009, 28, 480–493. [Google Scholar] [CrossRef] [Green Version]
- Takeda, T.; Sakai, S.; Takagi, H. Underwater flutter kicking causes deceleration in start and turn segments of front crawl. Sport. Biomech. 2020. [Google Scholar] [CrossRef]
- Naemi, R.; Easson, W.J.; Sanders, R.H. Hydrodynamic glide efficiency in swimming. J. Sci. Med. Sport. 2010, 13, 444–451. [Google Scholar] [CrossRef]
- Kolmogorov, S.V.; Duplisheva, O.A. Active drag, useful mechanical power output and hydrodynamic force coefficient in different genders and performance levels. J. Biomech. 1992, 25, 311–318. [Google Scholar] [CrossRef]
- Vennell, R.; Pease, D.; Wilson, B. Wave drag on human swimmers. J. Biomech. 2006, 39, 664–671. [Google Scholar] [CrossRef]
- Chollet, D.; Chalies, S.; Chatard, J.C. A new index of coordination for the crawl: Description and usefulness. Int. J. Sports Med. 2000, 21, 54–59. [Google Scholar] [CrossRef] [Green Version]
- Schnitzler, C.; Seifert, L.; Alberty, M.; Chollet, D. Hip velocity and arm coordination in front crawl swimming. Int. J. Sports Med. 2010, 31, 875–881. [Google Scholar] [CrossRef]
- Chollet, D.; Seifert, L. Inter-limb coordination in the four competitive strokes. In World Book of Swimming: From Science to Performance; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2011; pp. 153–172. ISBN 9781616682026. [Google Scholar]
- Seifert, L.; Boulesteix, L.; Chollet, D. Effect of gender on the adaptation of arm coordination in front crawl. Int. J. Sports Med. 2004, 25, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Schnitzler, C.; Brazier, T.; Button, C.; Seifert, L.; Chollet, D. Effect of velocity and added resistance on selected coordination and force parameters in front crawl. J. Strength Cond. Res. 2011, 25, 2681–2690. [Google Scholar] [CrossRef] [PubMed]
- Kjendlie, P.L.; Stallman, R.K.; Stray-Gundersen, J. Passive and active floating torque during swimming. Eur. J. Appl. Physiol. 2004, 93, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Houel, N.; Elipot, M.; André, F.; Hellard, P. Influence of angles of attack, frequency and kick amplitude on swimmer’s horizontal velocity during underwater phase of a grab start. J. Appl. Biomech. 2013, 29, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Kjendlie, P.L.; Ingjer, F.; Stallman, R.K.; Stray-Gundersen, J. Factors affecting swimming economy in children and adults. Eur. J. Appl. Physiol. 2004, 93, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.F.; Wang, L.Z.; Yan, W.X.; Li, D.J.; Xiong, S. A new device for estimating active drag in swimming at maximal velocity. J. Sports Sci. 2007, 25, 375–379. [Google Scholar]
- Kolmogorov, S.V.; Rumyantseva, O.A.; Gordon, B.J.; Cappaert, J.M. Hydrodynamic characteristics of competitive swimmers of different genders and performance levels. J. Appl. Biomech. 1997, 13, 88–97. [Google Scholar] [CrossRef]
- Ruschel, C.; Araujo, L.G.; Pereira, S.M.; Roesler, H. Kinematical analysis of the swimming start: Block, flight and underwater phases. In Proceedings of the XXV ISBS Symposium, Ouro Preto, Brazil, 23–25 August 2007; pp. 385–388. [Google Scholar]
- Lyttle, A.D.; Blanksby, B.A.; Elliot, B.C.; Lloyd, D.G. The effect of depth and velocity on drag during the streamlined guide. J. Swim. Res. 1998, 13, 15–22. [Google Scholar]
- Machado, L.; Ribeiro, J.; Costa, L.; Silva, A.J.; Rouboa, A.I.; Mantripragada, N.; Marinho, D.A.; Fernandes, R.; Vilas-Boas, J.P. The effect of depth on the drag force during underwater gliding: A CFD approach. Int. Soc. Biomech. Sport. 2010, 4–5. [Google Scholar]
- Arellano, R.; Pardillo, S.; Gavilán, A. Underwater undulatory swimming: Kinematic characteristics, vortex generation and application during the start, turn and swimming strokes. In Proceedings of the XX International Symposium on Biomechanics in Sports, Cáceres, Spain, 1–5 July 2002. [Google Scholar]
- Arellano, R.; Pardillo, S.; Gavilán, A. Usefulness of the strouhal number in evaluating human underwater undulatory swimming. In Proceedings of the IX Symposium Mondial Biomécanique et Médecine de la Natation, Saint-Etienne, France, 21–23 June 2002; pp. 33–38. [Google Scholar]
- Tor, E.; Pease, D.L.; Ball, K.A. Comparing three underwater trajectories of the swimming start. J. Sci. Med. Sport. 2015, 18, 725–729. [Google Scholar] [CrossRef]
- De Jesus, K.; de Jesus, K.; Machado, L.; Fernandes, R.J.; Vilas-Boas, J.P. Linear kinematics of the underwater undulatory swimming phase performed after two backstroke starting techniques. In Proceedings of the 30th International Conference on Biomechanics in Sports, Melbourne, Australia, 2–6 July 2012; pp. 371–374. [Google Scholar]
- World Medical Association. World Medical Association Declaration of Helsinki. Ethical principles for medical research involving human subjects. Bull. World Health Organ. 2001, 79, 373–374. [Google Scholar]
- Lyttle, A.; Blanksby, B. A look at gliding and underwater kicking in the swim turn. In Proceedings of the 18th International Symposium on Biomechanics in Sports, Hong Kong, China, 25–30 June 2000. [Google Scholar]
- Abdel-Aziz, Y.I.; Karara, H.M. Direct linear transformation from comparator coordinates into space coordinates in close range photogrammetry. In Proceedings of the Symposium on Close Range Photogrammetry, Urbana, IL, USA, 26–29 January 1971; pp. 1–18. [Google Scholar]
- Takeda, T.; Takagi, H.; Tsubakimoto, S. Effect of inclination and position of new swimming starting block’s back plate on track-start performance. Sport. Biomech. 2012, 11, 370–381. [Google Scholar] [CrossRef] [PubMed]
- Atkison, R.R.; Dickey, J.P.; Dragunas, A.; Nolte, V. Importance of sagittal kick symmetry for underwater dolphin kick performance. Hum. Mov. Sci. 2014, 33, 298–311. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, T.M.; de Jesus, K.; Abraldes, J.A.; Ribeiro, J.; Figueiredo, P.; Vilas-Boas, J.P.; Fernandes, R.J. Effects of protocol step length on biomechanical measures in swimming. Int. J. Sports Physiol. Perform. 2015, 10, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Wheat, J.; Glazier, P. Techniques for Measuring Coordination and Coordination Variability. In Variability in the Movement System: A Multi-Disciplinary Perspective; Davids, K., Bennett, S.J., Newell, K., Eds.; Human Kinetics: Champaign, IL, USA, 2005. [Google Scholar]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Nakashima, M. Simulation analysis of the effect of trunk undulation on swimming performance in underwater dolphin kick of human. J. Biomech. Sci. Eng. 2009, 4, 94–104. [Google Scholar] [CrossRef] [Green Version]
- Hochstein, S.; Blickhan, R. Body movement distribution with respect to swimmer’s glide position in human underwater undulatory swimming. Hum. Mov. Sci. 2014, 38, 305–318. [Google Scholar] [CrossRef]
- Alves, F.; Lopes, P.; Veloso, A.; Martins-Silva, A. Influence of body position on dolphin kick kinematics. In Proceedings of the 24th International Symposium on Biomechanics in Sports, Salzburg, Austria, 14–18 July 2006; pp. 3–6. [Google Scholar]
- Toussaint, H.M.; de Groot, G.; Savelberg, H.H.; Vervoorn, K.; Hollander, A.P.; van Ingen Schenau, G.J. Active drag related to velocity in male and female swimmers. J. Biomech. 1988, 21, 435–438. [Google Scholar] [CrossRef]
- Suito, H.; Ikegami, Y.; Nunome, H.; Sano, S.; Shinkai, H.; Tsujimoto, N. The effect of fatigue on the underwater arm stroke motion in the 100 M front crawl. J. Appl. Biomech. 2008, 24, 316–324. [Google Scholar] [CrossRef]
- Wakayoshi, K.; D’Acquisto, L.J.; Cappaert, J.M.; Troup, J.P. Relationship between oxygen uptake, stroke rate and swimming velocity in competitive swimming. Int. J. Sports Med. 1995, 16, 19–23. [Google Scholar] [CrossRef]
- Seifert, L.; Chollet, D.; Bardy, B. Effect of swimming velocity on arm coordination in the front crawl: A dynamic analysis. J. Sports Sci. 2004, 22, 651–660. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, T.M.; Keskinen, K.L.; Fernandes, R.; Colaço, P.; Carmo, C.; Vilas-Boas, J.P. Relationships between energetic, stroke determinants, and velocity in butterfly. Int. J. Sports Med. 2005, 26, 841–846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strzala, M.; Krezalek, P. The body angle of attack in front crawl performance in young swimmers. Hum. Mov. 2010, 11, 23–28. [Google Scholar] [CrossRef]
- Anderson, E.J.; McGillis, W.R.; Grosenbaugh, M.A. The boundary layer of swimming fish. J. Exp. Biol. 2001, 204, 81–102. [Google Scholar] [PubMed]
- Seifert, L.; Chollet, D.; Allard, P. Arm coordination symmetry and breathing effect in front crawl. Hum. Mov. Sci. 2005, 24, 234–256. [Google Scholar] [CrossRef] [PubMed]
- Seifert, L.; Leblanc, H.; Chollet, D.; Delignières, D. Inter-limb coordination in swimming: Effect of speed and skill level. Hum. Mov. Sci. 2010, 29, 103–113. [Google Scholar] [CrossRef] [Green Version]
- Seifert, L.; Vantorre, J.; Chollet, D. Biomechanical analysis of the breaststroke start. Int. J. Sports Med. 2007, 28, 970–976. [Google Scholar] [CrossRef]
- Sanders, R.H.; Cappaert, J.M.; Devlin, R.K. Wave characteristics of butterfly swimming. J. Biomech. 1995, 28, 9–16. [Google Scholar] [CrossRef]
- Sanders, R.H.; Cappaert, J.M.; Pease, D.L. Wave characteristics of olympic breaststroke swimmers. J. Appl. Biomech. 1998, 14, 40–51. [Google Scholar] [CrossRef]
Front Crawl | Backstroke | Butterfly | Breaststroke | |
---|---|---|---|---|
Pre-transition | ||||
Kick length (m/cycle) | 0.77 (0.12) | 0.72 (0.10) | 0.77 (0.12) | 3.66 (0.50) |
Kick rate (cycles/s) | 2.15 (0.31) | 2.14 (0.30) | 2.14 (0.35) | 0.39 (0.07) |
Kick amplitude (m) | 0.29 (0.06) | 0.27 (0.18) | 0.31 (0.06) | - |
Body depth (m) | −0.39 (0.13) | −0.62 (0.22) a | −0.36 (0.12) a | −0.53 (0.16) ac |
Trunk inclination 1 (o) | 16.20 (5.26) | 8.25 (6.13) a | 16.13 (5.35) a | 10.56 (7.30) ac |
Trunk inclination 2 (o) | 4.58 (3.07) | 9.01 (5.22) a | 4.91 (3.57) a | 7.42 (6.38) |
Body inclination 1 (o) | 14.31 (5.07) | 6.17 (4.55) a | 13.14 (4.87) a | 9.25 (8.19) |
Body inclination 2 (o) | 6.44 (3.96) | 4.42 (3.70) | 6.32 (4.50) | 6.63 (5.39) |
Transition | ||||
Body depth (m) | −0.20 (0.11) | −0.52 (0.17) a | −0.20 (0.11) a | −0.34 (0.14) abc |
Trunk inclination 1 (o) | 9.00 (4.77) | 9.02 (7.98) | 9.00 (5.07) | 9.80 (5.77) |
Trunk inclination 2 (o) | 7.45 (3.67) | 12.78 (6.07) a | 14.28 (6.76) b | 17.50 (6.39) bc |
Body inclination 1 (o) | 11.66 (6.46) | 6.37 (4.49) a | 12.62 (5.56) a | 25.26 (6.83) abc |
Body inclination 2 (o) | 9.66 (4.27) | 12.98 (5.99) | 11.15 (4.75) | 15.42 (5.76) ac |
Dependent Variables | Backward Regression Model | |||
---|---|---|---|---|
Front Crawl | Backstroke | Butterfly | Breaststroke | |
Beta standardized coefficients | ||||
Body depth | 0.32 | −0.40 | 1.80 | 0.28 |
Trunk inclination 1 | −0.36 | 0.32 | ||
Body inclination 1 | 0.38 | −0.30 | ||
DRP1 | 0.33 | −0.52 | 0.82 | |
DRP2 | −0.35 | 0.62 | −0.49 | |
y-intercept (constant) | 1.67 ± 0.08 | 1.92 ± 0.12 | 1.69 ± 0.08 | 1.25 ± 0.07 |
R2 | 0.263 | 0.321 | 0.364 | 0.230 |
R2 adjusted | 0.154 | 0.213 | 0.293 | 0.125 |
Standard error of estimate | 0.161 | 0.178 | 0.152 | 0.111 |
F | 2.407 | 2. 959 | 5.141 | 2.191 |
p | 0.044 * | 0.039 * | 0.006 ** | 0.118 |
Number of observations | 30 | 30 | 30 | 30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stosic, J.; Veiga, S.; Trinidad, A.; Navarro, E. How Should the Transition from Underwater to Surface Swimming Be Performed by Competitive Swimmers? Appl. Sci. 2021, 11, 122. https://doi.org/10.3390/app11010122
Stosic J, Veiga S, Trinidad A, Navarro E. How Should the Transition from Underwater to Surface Swimming Be Performed by Competitive Swimmers? Applied Sciences. 2021; 11(1):122. https://doi.org/10.3390/app11010122
Chicago/Turabian StyleStosic, Jelena, Santiago Veiga, Alfonso Trinidad, and Enrique Navarro. 2021. "How Should the Transition from Underwater to Surface Swimming Be Performed by Competitive Swimmers?" Applied Sciences 11, no. 1: 122. https://doi.org/10.3390/app11010122
APA StyleStosic, J., Veiga, S., Trinidad, A., & Navarro, E. (2021). How Should the Transition from Underwater to Surface Swimming Be Performed by Competitive Swimmers? Applied Sciences, 11(1), 122. https://doi.org/10.3390/app11010122