Tolerancing Informatics: Towards Automatic Tolerancing Information Processing in Geometrical Variations Management
Abstract
:1. Introduction
2. State of the Art: Tolerancing Information Sharing throughout the Product Life Cycle
2.1. The Role of Tolerancing Information
2.2. Types of Tolerancing Information
- Specification information results as in- and output of functional tolerancing during design, i.e., nominal product geometry, functional product requirements, geometrical product requirements, tolerance types and specified tolerance values. More particularly, it is distinguished in ISO 21619 between functional specifications, which result from functional product requirements, manufacturing specifications, which are to satisfy requirements of related manufacturing processes, and verification specifications.
- Verification information is obtained from verification activities, such as the observed part geometry, observed tolerance values, and the measurement uncertainty related to the tolerance verification. Beside the information about the conformance of the individual part instances to the specifications and the actual part deviations, it comprises information about the measurement processes and their uncertainties.
2.3. Authoring of Tolerancing Information
2.4. Representation Models for Tolerancing Information
2.5. Discussion
3. Tolerancing Informatics
3.1. Methodology
3.2. Definition of Tolerancing Informatics
3.3. Enablers of Tolerancing Informatics
3.4. Tolerancing Informatics Workflows
3.4.1. Automatic Transfer of Specification-Related Tolerancing Information
3.4.2. Assembly Adjustments and Advanced Matching Strategies
3.4.3. Feedback to Design for Knowledge-Based and Data-Driven Tolerance Specification
3.5. Application and Benefits of Tolerancing Informatics Workflows
4. Discussion
5. Summary and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schleich, B.; Wärmefjord, K.; Söderberg, R.; Wartzack, S. Geometrical Variations Management 4.0: Towards next Generation Geometry Assurance. Procedia CIRP 2018, 75, 3–10. [Google Scholar] [CrossRef]
- Dantan, J.-Y. Tolerancing. In CIRP Encyclopedia of Production Engineering; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1230–1237. [Google Scholar]
- Dantan, J.-Y.; Anwer, N.; Mathieu, L. Integrated Tolerancing Process for conceptual design. CIRP Ann. Manuf. Technol. 2003, 52, 135–138. [Google Scholar] [CrossRef]
- Goetz, S.; Schleich, B.; Wartzack, S. Integration of robust and tolerance design in early stages of the product development process. Res. Eng. Des. 2020, 31, 157–173. [Google Scholar] [CrossRef] [Green Version]
- Morse, E.; Dantan, J.-Y.; Anwer, N.; Söderberg, R.; Moroni, G.; Qureshi, A.; Jiang, X.; Mathieu, L. Tolerancing: Managing uncertainty from conceptual design to final product. CIRP Ann. 2018, 67, 695–717. [Google Scholar] [CrossRef] [Green Version]
- Quintana, V.; Rivest, L.; Pellerin, R.; Venne, F.; Kheddouci, F. Will Model-based Definition replace engineering drawings throughout the product lifecycle? A global perspective from aerospace industry. Comput. Ind. 2010, 61, 497–508. [Google Scholar] [CrossRef]
- Srinivasan, R.S.; Wood, K.L.; McAdams, D.A. Functional tolerancing: A design for manufacturing methodology. Res. Eng. Des. 1996, 8, 99–115. [Google Scholar] [CrossRef]
- Kethara Pasupathy, T.M.; Morse, E.P.; Wilhelm, R.G. A Survey of Mathematical Methods for the Construction of Geometric Tolerance Zones. J. Comput. Inf. Sci. Eng. 2003, 3, 64–75. [Google Scholar] [CrossRef]
- Bijnens, J.; Cheshire, D. The Current State of Model Based Definition. Comput. Aided Des. Appl. 2019, 16, 308–317. [Google Scholar] [CrossRef]
- Feng, S.C.; Yang, Y. A dimension and tolerance data model for concurrent design and systems integration. J. Manuf. Syst. 1995, 14, 406–426. [Google Scholar] [CrossRef]
- Zhao, X.; Pasupathy, T.M.K.; Wilhelm, R.G. Modeling and representation of geometric tolerances information in integrated measurement processes. Comput. Ind. 2006, 57, 319–330. [Google Scholar] [CrossRef] [Green Version]
- Belkadi, F.; Bosch-Mauchand, M.; Kibamba, Y.; Le Duigou, J.; Eynard, B. Functional Architecture and Specifications for Tolerancing Data and Knowledge Management. In Product Lifecycle Management; Towards Knowledge-Rich Enterprises; Springer: Berlin/Heidelberg, Germany, 2012; pp. 35–45. [Google Scholar]
- Qin, Y.; Qi, Q.; Lu, W.; Liu, X.; Scott, P.J.; Jiang, X. A review of representation models of tolerance information. Int. J. Adv. Manuf. Technol. 2018, 95, 2193–2206. [Google Scholar] [CrossRef] [Green Version]
- Steinbuch, K. Informatik: Automatische Informationsverarbeitung (Informatics: Automatic information processing). Sel Nachr. 1957, 4, 171. [Google Scholar]
- Schleich, B.; Anwer, N.; Mathieu, L.; Wartzack, S. Shaping the digital twin for design and production engineering. CIRP Ann. 2017, 66, 141–144. [Google Scholar] [CrossRef] [Green Version]
- Söderberg, R.; Wärmefjord, K.; Carlson, J.S.; Lindkvist, L. Toward a Digital Twin for real-time geometry assurance in individualized production. CIRP Ann. 2017, 66, 137–140. [Google Scholar] [CrossRef]
- Wärmefjord, K.; Söderberg, R.; Schleich, B.; Wang, H. Digital Twin for Variation Management: A General Framework and Identification of Industrial Challenges Related to the Implementation. Appl. Sci. 2020, 10, 3342. [Google Scholar] [CrossRef]
- Goetz, S.; Schleich, B. Ontology-based representation of tolerancing and design knowledge for an automated tolerance specification of product concepts. Procedia CIRP 2020, 92, 194–199. [Google Scholar] [CrossRef]
- Sauer, C.; Heling, B.; Schmutzler, S.; Schleich, B. A Knowledge-Based Engineering Workbench for Automated Tolerance Specification. In Proceedings of the ASME 2019 International Mechanical Engineering Congress and Exposition, Salt Lake City, UT, USA, 11–14 November 2019; p. V02BT02A062. [Google Scholar]
- Morse, E.; Heysiattalab, S.; Barnard-Feeney, A.; Hedberg, T., Jr. Interoperability: Linking Design and Tolerancing with Metrology. Procedia CIRP 2016, 43, 13–16. [Google Scholar] [CrossRef] [Green Version]
- Majstorovic, V.; Sibalija, T.; Ercevic, M.; Ercevic, B. CAI Model for Prismatic Parts in Digital Manufacturing. Procedia CIRP 2014, 25, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Stojadinovic, S.M.; Majstorovic, V.; Durakbasa, N.M. An Advanced CAI Model for Inspection Planning on CMM. In Proceedings of the 5th International Conference on Advanced Manufacturing Engineering and Technologies, Belgrade, Serbia, 5–9 June 2017; Springer International Publishing: Cham, Switzerland, 2017; pp. 57–65. [Google Scholar]
- Hallmann, M.; Goetz, S.; Schleich, B. Mapping of GD&T information and PMI between 3D product models in the STEP and STL format. Comput. Aided Des. 2019, 115, 293–306. [Google Scholar]
- Leirmo, T.L.; Semeniuta, O.; Martinsen, K. Tolerancing from STL data: A Legacy Challenge. Procedia CIRP 2020, 92, 218–223. [Google Scholar] [CrossRef]
- Cicconi, P.; Raffaeli, R. An Industry 4.0 Framework for the Quality Inspection in Gearboxes Production. Comput. Aided Des. Appl. 2020, 17, 813–824. [Google Scholar] [CrossRef]
- Emmer, C.; Glaesner, K.-H.; Pfouga, A.; Stjepandić, J. Advances in 3D Measurement Data Management for Industry 4.0. Procedia Manuf. 2017, 11, 1335–1342. [Google Scholar] [CrossRef]
- Wärmefjord, K.; Söderberg, R.; Lindkvist, L.; Lindau, B.; Carlson, J.S. Inspection Data to Support a Digital Twin for Geometry Assurance. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Tampa, FL, USA, 3–9 November 2017; p. V002T02A101. [Google Scholar]
- Schleich, B.; Anwer, N.; Mathieu, L.; Wartzack, S. Skin Model Shapes: A new paradigm shift for geometric variations modelling in mechanical engineering. Comput. Aided Des. 2014, 50, 1–15. [Google Scholar] [CrossRef]
- Lanza, G.; Haefner, B.; Kraemer, A. Optimization of selective assembly and adaptive manufacturing by means of cyber-physical system based matching. CIRP Ann. 2015, 64, 399–402. [Google Scholar] [CrossRef] [Green Version]
- Rezaei Aderiani, A.; Wärmefjord, K.; Söderberg, R.; Lindkvist, L. Individualizing Locator Adjustments of Assembly Fixtures Using a Digital Twin. J. Comput. Inf. Sci. Eng. 2019, 19, 041019. [Google Scholar] [CrossRef]
- Aderiani, A.R.; Wärmefjord, K.; Söderberg, R.; Lindkvist, L. Developing a selective assembly technique for sheet metal assemblies. Int. J. Prod. Res. 2019, 57, 7174–7188. [Google Scholar] [CrossRef] [Green Version]
- Madrid, J.; Vallhagen, J.; Söderberg, R.; Wärmefjord, K. Enabling Reuse of Inspection Data to Support Robust Design: A Case in the Aerospace Industry. Procedia CIRP 2016, 43, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.-C.; Chang, D.-Y. Cost-tolerance analysis model based on a neural networks method. Int. J. Prod. Res. 2002, 40, 1429–1452. [Google Scholar] [CrossRef]
- Brückner, K.; Storch, M.; Hallmann, M.; Heling, B.; Schleich, B.; Wartzack, S. A Novel Approach to the Identification of Tolerance-Cost-Relationships in Serial Production. Konstruktion 2019, 71, 84–90. [Google Scholar]
- Hallmann, M.; Schleich, B.; Wartzack, S. From tolerance allocation to tolerance-cost optimization: A comprehensive literature review. Int. J. Adv. Manuf. Technol. 2020, 107, 4859–4912. [Google Scholar] [CrossRef]
- Söderberg, R.; Wärmefjord, K.; Madrid, J.; Lorin, S.; Forslund, A.; Lindkvist, L. An information and simulation framework for increased quality in welded components. CIRP Ann. 2018, 67, 165–168. [Google Scholar] [CrossRef]
- Heling, B.; Oberleiter, T.; Rohrmoser, A.; Kiener, C.; Schleich, B.; Hagenah, H.; Merklein, M.; Willner, K.; Wartzack, S. A Concept for Process-Oriented Interdisciplinary Tolerance Management Considering Production-Specific Deviations. In Proceedings of the 22nd International Conference on Engineering Design (ICED19), Delft, The Netherlands, 5–8 August 2019; Cambridge University Press: Cambridge, UK; pp. 3441–3450. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schleich, B.; Anwer, N. Tolerancing Informatics: Towards Automatic Tolerancing Information Processing in Geometrical Variations Management. Appl. Sci. 2021, 11, 198. https://doi.org/10.3390/app11010198
Schleich B, Anwer N. Tolerancing Informatics: Towards Automatic Tolerancing Information Processing in Geometrical Variations Management. Applied Sciences. 2021; 11(1):198. https://doi.org/10.3390/app11010198
Chicago/Turabian StyleSchleich, Benjamin, and Nabil Anwer. 2021. "Tolerancing Informatics: Towards Automatic Tolerancing Information Processing in Geometrical Variations Management" Applied Sciences 11, no. 1: 198. https://doi.org/10.3390/app11010198
APA StyleSchleich, B., & Anwer, N. (2021). Tolerancing Informatics: Towards Automatic Tolerancing Information Processing in Geometrical Variations Management. Applied Sciences, 11(1), 198. https://doi.org/10.3390/app11010198