The Use of MgO Obtained from Serpentinite in the Synthesis of a Magnesium Potassium Phosphate Matrix for Radioactive Waste Immobilization
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Obtaining MgO from Serpentinite
2.2. Preparation of the MPP Matrix
2.3. Investigation of MgO and MPP Matrix Samples
3. Results and Discussion
3.1. Features of the Obtaining Process of MgO from Serpentinite
0.08 Fe(NH4)2(SO4)2 + H2O + 0.08 (NH4)2SO4
3.2. Effect of Calcination of MgO Powder
3.3. Study of the Obtained Samples of the MPP Matrix
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vinokurov, S.E.; Kulikova, S.A.; Krupskaya, V.V.; Myasoedov, B.F. Magnesium potassium phosphate compound for radioactive waste immobilization: Phase composition, structure, and physicochemical and hydrolytic durability. Radiochemistry 2018, 60, 70–78. [Google Scholar] [CrossRef]
- Vinokurov, S.E.; Kulikova, S.A.; Myasoedov, B.F. Solidification of high level waste using magnesium potassium phosphate compound. Nucl. Eng. Technol. 2019, 51, 755–760. [Google Scholar] [CrossRef]
- Kulikova, S.A.; Vinokurov, S.E. The influence of zeolite (Sokyrnytsya deposit) on the physical and chemical resistance of a magnesium potassium phosphate compound for the immobilization of high-level waste. Molecules 2019, 24, 3421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dmitrieva, A.V.; Kalenova, M.Y.; Kulikova, S.A.; Kuznetsov, I.V.; Koshcheev, A.M.; Vinokurov, S.E. Magnesium-potassium phosphate matrix for immobilization of 14C. Russ. J. Appl. Chem. 2018, 91, 641–646. [Google Scholar] [CrossRef]
- Kulikova, S.A.; Belova, K.Y.; Tyupina, E.A.; Vinokurov, S.E. Conditioning of spent electrolyte surrogate LiCl-KCl-CsCl using magnesium potassium phosphate compound. Energies 2020, 13, 1963. [Google Scholar] [CrossRef]
- Graeser, S.; Postl, W.; Bojar, H.-P.; Berlepsch, P.; Armbruster, T.; Raber, T.; Ettinger, K.; Walter, F. Struvite-(K), KMgPO4∙6H2O, the potassium equivalent of struvite—A new mineral. Eur. J. Miner. 2008, 20, 629–633. [Google Scholar] [CrossRef]
- Sasaki, K.; Moriyama, S. Effect of calcination temperature for magnesite on interaction of MgO-rich phases with boric acid. Ceram. Int. 2014, 40, 1651–1660. [Google Scholar] [CrossRef]
- Yu, J.; Qian, J.; Wang, F.; Li, Z.; Jia, X. Preparation and properties of a magnesium phosphate cement with dolomite. Cem. Concr. Res. 2020, 138, 106235. [Google Scholar] [CrossRef]
- Sirota, V.; Selemenev, V.; Kovaleva, M.; Pavlenko, I.; Mamunin, K.; Dokalov, V.; Yapryntsev, M. Preparation of crystalline Mg(OH)2 nanopowder from serpentinite mineral. Int. J. Min. Sci. Technol. 2018, 28, 499–503. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, C.-J.; Jiang, M.-F.; Saxén, H.; Zevenhoven, R. Preparation of magnesium hydroxide from serpentinite by sulfuric acid leaching for CO2 mineral carbonation. Miner. Eng. 2015, 79, 116–124. [Google Scholar] [CrossRef]
- Teir, S.; Kuusik, R.; Fogelholm, C.-J.; Zevenhoven, R. Production of magnesium carbonates from serpentinite for long-term storage of CO2. Int. J. Miner. Process. 2007, 85, 1–15. [Google Scholar] [CrossRef]
- Vinokurov, S.E.; Kulikova, S.A.; Krupskaya, V.V.; Tyupina, E.A. Effect of characteristics of magnesium oxide powder on composition and strength of magnesium potassium phosphate compound for solidifying radioactive waste. Russ. J. Appl. Chem. 2019, 92, 490–497. [Google Scholar] [CrossRef]
- Wagh, A.S. Chemically Bonded Phosphate Ceramics: Twenty-First Century Materials with Diverse Application, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–422. [Google Scholar]
- Tan, Y.; Yu, H.; Li, Y.; Wu, C.; Dong, J.; Wen, J. Magnesium potassium phosphate cement prepared by the byproduct of magnesium oxide after producing Li2CO3 from salt lakes. Ceram. Int. 2014, 40, 13543–13551. [Google Scholar] [CrossRef]
- Viani, A.; Sotiriadis, K.; Šašek, P.; Appavou, M.-S. Evolution of microstructure and performance in magnesium potassium phosphate ceramics: Role of sintering temperature of MgO powder. Ceram. Int. 2016, 42, 16310–16316. [Google Scholar] [CrossRef]
- Dong, J.; Yu, H.; Xiao, X.; Li, Y.; Wu, C.; Wen, J.; Tan, Y.; Chang, C.; Zheng, W. Effects of calcination temperature of boron-containing magnesium oxide raw materials on properties of magnesium phosphate cement as a biomaterial. J. Wuhan Univ. Technol. Sci. Ed. 2016, 31, 671–676. [Google Scholar] [CrossRef]
- Post, J.E.; Bish, D.L. Rietveld refinement of crystal structures using powder X-ray diffraction data. In Modern Powder Diffraction, Reviews in Mineralogy; MSA: Washington, DC, USA, 1989; pp. 277–308. [Google Scholar]
- Döbelin, N.; Kleeberg, R. Profex: A graphical user interface for the Rietveld refinement program BGMN. J. Appl. Crystallogr. 2015, 48, 1573–1580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russian Federation. Radioactive Waste. Long Time Leach Testing of Solidified Radioactive Waste Forms; GOST R 52126-2003; Standardinform: Moscow, Russia, 2003; pp. 1–8. [Google Scholar]
- De Groot, G.; van der Sloot, H. Determination of leaching characteristics of waste materials leading to environmental product certification. In Stabilization and Solidification of Hazardous, Radioactive, and Mixed Wastes; Gilliam, T., Wiles, C., Eds.; ASTM International: West Conshohocken, PA, USA, 1992; Volume 2, pp. 149–170. [Google Scholar]
- Torras, J.; Buj, I.; Rovira, M.; de Pablo, J. Semi-dynamic leaching tests of nickel containing wastes stabilized/solidified with magnesium potassium phosphate cements. J. Hazard. Mater. 2011, 186, 1954–1960. [Google Scholar] [CrossRef] [PubMed]
- Pundsack, F.L. Recovery of Silica, Iron Oxide and Magnesium Carbonate from the Treatment of Serpentine with Ammonium Bisulfate. U.S. Patent 3,338,667, 29 August 1967. [Google Scholar]
- Khamizov, R.K.; Zaitsev, V.A.; Gruzdeva, A.N.; Krachak, A.N.; Rarova, I.G.; Vlasovskikh, N.S.; Moroshkina, L.P. Feasibility of acid–salt processing of alumina-containing raw materials in a closed-loop process. Russ. J. Appl. Chem. 2020, 93, 1059–1067. [Google Scholar] [CrossRef]
- Nduagu, E.; Highfield, J.; Chen, J.; Zevenhoven, R. Mechanisms of serpentine–ammonium sulfate reactions: Towards higher efficiencies in flux recovery and Mg extraction for CO2 mineral sequestration. RSC Adv. 2014, 4, 64494–64505. [Google Scholar] [CrossRef]
- Russian Federation. Reagents. Magnesium oxide. Specifications; GOST 4526-75; Standardinform: Moscow, Russia, 1975; pp. 1–11. [Google Scholar]
- Russian Federation. Collection, processing, storage and conditioning of liquid radioactive waste. Safety requirements. In Federal Norms and Rules in the Field of Atomic Energy Use; NP-019-15; Rostekhnadzor: Moscow, Russia, 2015; pp. 1–22. [Google Scholar]
Content | MgO | SiO2 | Fe3O4 | CaO | NiO | Al2O3 | Cr2O3 | MnO | SO3 | K2O | Na2O | LOI * |
---|---|---|---|---|---|---|---|---|---|---|---|---|
(wt%) | 38.05 | 39.96 | 8.55 | 0.63 | 0.36 | 0.33 | 0.32 | 0.11 | 0.06 | 0.02 | 0.01 | 11.30 |
Component Content (wt%) | |
---|---|
MgO | Impurities |
99.78 | SiO2—0.10; CaO—0.08; Fe2O3—0.01; MnO—0.02; P2O5—0.01 |
Sample | Mode (μm) | Median (μm) | >90% (μm) | <0.1 μm | <1 μm | <10 μm | <100 m |
---|---|---|---|---|---|---|---|
MgO | 54.92 | 37.09 | 87.51 | 0.99% | 8.04% | 18.20% | 98.12% |
Calcined MgO | 54.92 | 38.92 | 110.47 | 0.71% | 3.51% | 19.77% | 92.35% |
MgO * | 7.58 | 6.81 | 19.26 | no | 3.70% | 74.13% | 100% |
Calcined MgO * | 30.68 | 10.58 | 43.51 | 4.73% | 14.64% | 50.32% | 100% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulikova, S.A.; Vinokurov, S.E.; Khamizov, R.K.; Vlasovskikh, N.S.; Belova, K.Y.; Dzhenloda, R.K.; Konov, M.A.; Myasoedov, B.F. The Use of MgO Obtained from Serpentinite in the Synthesis of a Magnesium Potassium Phosphate Matrix for Radioactive Waste Immobilization. Appl. Sci. 2021, 11, 220. https://doi.org/10.3390/app11010220
Kulikova SA, Vinokurov SE, Khamizov RK, Vlasovskikh NS, Belova KY, Dzhenloda RK, Konov MA, Myasoedov BF. The Use of MgO Obtained from Serpentinite in the Synthesis of a Magnesium Potassium Phosphate Matrix for Radioactive Waste Immobilization. Applied Sciences. 2021; 11(1):220. https://doi.org/10.3390/app11010220
Chicago/Turabian StyleKulikova, Svetlana A., Sergey E. Vinokurov, Ruslan K. Khamizov, Natal’ya S. Vlasovskikh, Kseniya Y. Belova, Rustam K. Dzhenloda, Magomet A. Konov, and Boris F. Myasoedov. 2021. "The Use of MgO Obtained from Serpentinite in the Synthesis of a Magnesium Potassium Phosphate Matrix for Radioactive Waste Immobilization" Applied Sciences 11, no. 1: 220. https://doi.org/10.3390/app11010220
APA StyleKulikova, S. A., Vinokurov, S. E., Khamizov, R. K., Vlasovskikh, N. S., Belova, K. Y., Dzhenloda, R. K., Konov, M. A., & Myasoedov, B. F. (2021). The Use of MgO Obtained from Serpentinite in the Synthesis of a Magnesium Potassium Phosphate Matrix for Radioactive Waste Immobilization. Applied Sciences, 11(1), 220. https://doi.org/10.3390/app11010220