Thermo-Chemical Treatment for Carcass Disposal and the Application of Treated Carcass as Compost
Abstract
:1. Introduction
2. Materials and Methods
2.1. Thermo-Chemical Treatment Machinery
2.2. Site Description
2.3. Gas Sampling and Analysis
2.4. Chemical Analysis of the Treated Carcass Product
2.5. Lettuce Growth Experiments Using Thermo-Chemically Treated Carcass as a Compost
2.6. Elution of Ammonia from the Treated Carcass Product
2.7. Data Analysis
3. Results and Discussion
3.1. Gas Emitted from Thermo-Chemical Treatment Process
3.2. Characteristics of Thermo-Chemically Treated Carcass as a Compost
3.3. Comparison of Thermo-Chemical Treatment Machinery with Conventional Methods
3.4. Lettuce Growth Using Thermo-Chemically Treated Carcass Product as a Compost
3.5. Application of Zeolite for Retarding the Release of NH4 from Treated Carcass Product
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Delgado, C.; Rosegrant, M.; Steinfeld, H.; Ehui, S.; Courbois, C. Livestock to 2020; International Food Policy Research Institute: Washington, DC, USA, 1999. [Google Scholar]
- Seo, D.C.; Kang, S.-W.; Choi, I.-W.; Sung, H.-H.; Hur, T.-Y.; Yoo, J.-Y.; Lee, Y.-J.; Heo, J.S.; Kang, S.-J.; Cho, J.-S. Evaluation of Fertilizer Value of Animal Cadavers for Agricultural Recycling. Korean J. Soil Sci. Fertil. 2011, 44, 788–793. [Google Scholar] [CrossRef] [Green Version]
- Kim, G. Treatment of residues of excavated carcasses burials. J. Korean Soc. Water Wastewater 2018, 32, 269–277. [Google Scholar] [CrossRef]
- Chowdhury, S.; Kim, G.-H.; Bolan, N.; Longhurst, P. A critical review on risk evaluation and hazardous management in carcass burial. Process. Saf. Environ. Prot. 2019, 123, 272–288. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Q.; Snow, D.; Bartelt-Hunt, S. Potential water quality impacts originating from land burial of cattle carcasses. Sci. Total. Environ. 2013, 456, 246–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanier, M.; Comer, P.; Hater, G.; Kaye, G.; Meeker, D.; Thacker, H. Ruminant Carcass Disposal Options for Routine and Catastrophic Mortality; Council for Agricultural Science and Technology (CAST): Ames, IA, USA, 2009; p. 41. [Google Scholar]
- Nutsch, A.; Spire, M. Carcass Disposal: A Comprehensive Review; National Agricultural Biosecurity Center, Kansas State University: Manhattan, KS, USA, 2004; Chapter 1. [Google Scholar]
- Freedman, R.; Fleming, R. Water Quality Impacts of Burying Livestock Mortalities; Livestock Mortality Recycling Project Steering Committee: Ridgetown, ON, Canada, 2003. [Google Scholar]
- Gwyther, C.L.; Williams, A.P.; Golyshin, P.N.; Edwards-Jones, G.; Jones, D.L. The environmental and biosecurity character-istics of livestock carcass disposal methods: A review. Waste Manag. 2011, 31, 767–778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glanville, T. Impact of livestock burial on shallow groundwater quality. In Proceedings of the American Society of Agri-Cultural Engineers, Mid-Central Meeting, St. Joseph, MI, USA, 28 April 2000. [Google Scholar]
- Myers, L.M.; Bush, P.B.; Segars, W.; Radcliffe, D.E. Impact of Poultry Mortality Pits on Farm Groundwater Quality. In Proceedings of the 1999 Georgia Water Resources Conference, Athens, Georgia, 30–31 March 1999. [Google Scholar]
- Kim, K.H.; Kim, K.R.; Kim, H.S.; Lee, G.T.; Lee, K.H. Assessment of soil and groundwater contamination at two animal car-cass disposal sites. Korean J. Soil Sci. Fert. 2010, 43, 384–389. [Google Scholar]
- Davies, R.H.; Wray, C. Seasonal variations in the isolation of Salmonella typhimurium, Salmonella enteritidis, Bacillus ce-reus and Clostridium perfringens from environmental samples. J. Vet. Med. B 1996, 43, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Det Norske Veritas. Independent Environmental and Public Health Risk Assessment of DEFRA Foot and Mouth Disease Disposal Site; No. 20073900; Det Norske Veritas: Oslo, Norway, 2003. [Google Scholar]
- McClaskey, J.M. A Multidisciplinary Policy Approach to Food and Agricultural Biosecurity and Defense. Ph.D. Thesis, Kansas State University, Manhattan, KS, USA, 2014. [Google Scholar]
- Mukhtar, S.; Kalbasi, A.; Ahmed, A. Carcass Disposal: A Comprehensive Review; National Agricultural Biosecurity Center, Kansas State University: Manhattan, KS, USA, 2004; Chapter 3. [Google Scholar]
- Auvenmann, B.; Kalbasi, A.; Ahmed, A. Carcass Disposal: A Comprehensive Review; National Agricultural Biosecuity Center, Kansas State University: Manhattan, KS, USA, 2004; Chapter 4. [Google Scholar]
- Kalbasi-Ashtari, A.; Schutz, M.; Auvermann, B. Carcass rendering systems for farm mortalities: A review. J. Environ. Eng. Sci. 2008, 7, 199–211. [Google Scholar] [CrossRef] [Green Version]
- Staroń, P.; Kowalski, Z.; Staroń, A.; Banach, M. Thermal treatment of waste from the meat industry in high scale rotary kiln. Int. J. Environ. Sci. Technol. 2017, 14, 1157–1168. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.-J.; Hung, M.-C.; Huang, K.-L.; Hwang, W.-I. Emission of heavy metals from animal carcass incinerators in Taiwan. Chemosphere 2004, 55, 1197–1205. [Google Scholar] [CrossRef] [PubMed]
- Thacker, H.L. Carcass Disposal: A Comprehensive Review; National Agricultural Biosecurity Center, Kansas State University: Manhattan, KS, USA, 2004; Chapter 6. [Google Scholar]
- Erickson, L.E.; Fayet, E.; Kakumanu, B.K.; Davis, L.C. Carcass Disposal: A Comprehensive Review; National Agricultural Biosecurity Center, Kansas State University: Manhattan, KS, USA, 2004; Chapter 5. [Google Scholar]
- Arias, J.Z.; Reuter, T.; Sabir, A.; Gilroyed, B.H. Ambient alkaline hydrolysis and anaerobic digestion as a mortality management strategy for whole poultry carcasses. Waste Manag. 2018, 81, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Ko, H.J.; Kim, K.Y.; Kim, H.T.; Kim, C.N.; Umeda, M. Evaluation of maturity parameters and heavy metal contents in com-posts made from animal manure. Waste Manag. 2008, 28, 813–820. [Google Scholar] [CrossRef] [PubMed]
- Cummins, C.G.; Wood, C.W.; Delaney, D.P. Co-Composted Poultry Mortalities and Poultry Litter. J. Sustain. Agric. 1994, 4, 7–19. [Google Scholar] [CrossRef]
- Donald, J.O.; Blake, J.P. Dead poultry composter construction. In Proceedings of the 1990 National Poultry Waste Management Symposium. National Poultry Waste Management Symposium Committee, Raleigh, NC, USA, 3–4 October 1990; p. 384. [Google Scholar]
- Poss, P.E. Central pick-up of farm dead poultry. In Proceedings of the 1990 National Poultry Waste Management Symposium. National Poultry Waste Management Symposium Committee, Raleigh, NC, USA, 3–4 October 1990; pp. 75–76. [Google Scholar]
- CAST (Council for Agricultural Science and Technology). Swine Carcass Disposal Options for Routine and Catastrophic Mortality; CAST: Ames, IA, USA, 2009; p. 39. [Google Scholar]
- McClaskey, J. Carcass Disposal: A Comprehensive Review; National Agricultural Biosecurity Center, Kansas State University: Manhattan, KS, USA, 2004; Chapter 9. [Google Scholar]
- Bernal, M.P.; Sommer, S.G.; Chadwick, D.; Qing, C.; Guoxue, L.; Michel, F.C., Jr. Current approaches and future trends in compost quality criteria for agronomic, environmental, and human health benefits. Adv. Agron. 2017, 144, 143–233. [Google Scholar]
- Leyva-Ramos, R.; Jacobo-Azuara, A.; Diaz-Flores, P.; Guerrero-Coronado, R.; Mendoza-Barron, J.; Berber-Mendoza, M. Adsorption of chromium(VI) from an aqueous solution on a surfactant-modified zeolite. Colloids Surf. A Physicochem. Eng. Asp. 2008, 330, 35–41. [Google Scholar] [CrossRef]
- Hong, S.-H.; Lee, J.-I.; Lee, C.-G.; Park, S.-J. Effect of temperature on capping efficiency of zeolite and activated carbon under fabric mats for interrupting nutrient release from sediments. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Brady, N.C.; Weil, R.R. Elements of the Nature and Properties of Soils, 3rd ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2014. [Google Scholar]
Analysis Items/Samples | Regulation | Chicken/No Quicklime | Chickens/Quicklime | Pigs/No Quicklime | Pigs/Quicklime |
---|---|---|---|---|---|
N (%) | 0.74 | 0.80 | 0.91 | 1.00 | |
P2O5 (%) | 0.27 | 0.34 | 0.30 | 0.38 | |
K (%) | 0.29 | 0.32 | 0.33 | 0.34 | |
C (%) | <12 | 22.7 | 24.3 | 37.3 | 38.3 |
Organic matter to nitrogen ratio | >45 | 30.7 | 30.4 | 41.0 | 38.2 |
Moisture (%) | >85 | 27.91 | 15.58 | 10.64 | 10.21 |
Hg (mg/kg) | >2 | 0.00015 | 0.0076 | 0.004 | 0.0074 |
As (mg/kg) | >45 | 2.4 | 1.82 | 1.98 | 1.56 |
Cd (mg/kg) | >5 | 0.12 | 0.12 | 0.12 | 0.16 |
Pb (mg/kg) | >130 | 3.77 | 2.95 | 2.89 | 2.65 |
Cu (mg/kg) | >360 | 5.79 | 5.21 | 9.71 | 10.54 |
Ni (mg/kg) | >45 | 2.19 | 1.86 | 5.15 | 2.78 |
Zn (mg/kg) | >900 | 30.88 | 24.77 | 60.5 | 61.28 |
Cr (mg/kg) | >200 | 4.1 | 3.2 | 11.46 | 4.27 |
Salinity (%) | >2 | 0.22 | 0.23 | 0.23 | 0.24 |
Germination index | <70 | 30.98 | 19.74 | 24.27 | 17.83 |
Alkali fraction (%) | 16.07 | 25.18 | 12.7 | 25.51 | |
Escherichia coli (O157:H7) | N.D †. | N.D. | N.D. | N.D. | N.D. |
Salmonella | N.D. | N.D. | N.D. | N.D. | N.D. |
Classification | 16,000 Chickens/8 Days | 418 Pigs/10 Days |
---|---|---|
Income | 67,042,000 | 110,724,000 |
Total cost | 15,791,050 | 37,835,315 |
Labor costs | 1,170,000 | 5,700,000 |
Equipment rental fee | 6,248,500 | 12,881,000 |
Consumable material cost | 4,378,500 | 6,920,000 |
Cost estimates per ton of carcass disposal (USD/ton) | 548 | 754 |
Treated Carcass Addition (%) | Plant Height (mm) | No. of Leaves | Leaf Length (mm) | Leaf Width (mm) | Fresh Weight (g) | Dry Weight (g) | Chlorophyll |
---|---|---|---|---|---|---|---|
0% | 158.1 ± 6.7 b z | 6.7 ± 0.2 b | 112.3 ± 5.2 b | 41.1 ± 1.2 b | 3.335 ± 0.3 b | 0.356 ± 0.03 ab | 26.6 ± 1.0 a |
25% | 132.3 ± 0.9 c | 6.5 ± 0.2 b | 91.9 ± 2.1 c | 35.2 ± 0.6 c | 2.289 ± 0.1 b | 0.286 ± 0.00 bc | 23.9 ± 0.9 b |
50% | 134.8 ± 2.6 c | 6.6 ± 0.1 b | 92.9 ± 2.2 c | 34.4 ± 0.7 c | 2.055 ± 0.1 b | 0.246 ± 0.01 c | 25.4 ± 0.3 ab |
Commercial soil | 307.1 ± 6.9 a | 7.8 ± 0.2a | 167.8 ± 4.6 a | 49.1 ± 0.8 a | 8.915 ± 0.8 a | 0.420 ± 0.04 a | 25.4 ± 0.2 ab |
Significance | *** | *** | *** | *** | *** | ** | ns |
Treated Carcass Addition (%) | 0% | 25% | 50% |
---|---|---|---|
N (%) | 0.019 | 0.059 | 0.120 |
P2O5 (%) | 0.006 | 0.081 | 0.024 |
K (%) | 0.055 | 0.320 | 0.060 |
C (%) | 4.99 | 6.10 | 8.28 |
Organic matter to nitrogen ratio | 262.7 | 103.4 | 8.28 |
Moisture (%) | 24.82 | 26.66 | 32.47 |
Salinity (%) | 0.058 | 0.096 | 0.062 |
Decomposed degree(germination) | 91.38 | 97.68 | 95.09 |
Alkali fraction (%) | 0.91 | 2.2 | 0.98 |
E. coli (O157:H7) | N.D. | N.D. | N.D. |
Salmonella | N.D. | N.D. | N.D. |
Source | DF | Sum of Squares | Mean Square | F Value | Pr > F |
---|---|---|---|---|---|
Sol | 2 | 19,724.2 | 9862.1 | 3691.4 | <0.0001 |
Time | 7 | 268.8 | 38.4 | 14.4 | <0.0001 |
Sol-Time | 14 | 265.4 | 18.9 | 7.1 | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-I.; Cho, E.-J.; Lyonga, F.N.; Lee, C.-H.; Hwang, S.-Y.; Kim, D.-H.; Lee, C.-G.; Park, S.-J. Thermo-Chemical Treatment for Carcass Disposal and the Application of Treated Carcass as Compost. Appl. Sci. 2021, 11, 431. https://doi.org/10.3390/app11010431
Lee J-I, Cho E-J, Lyonga FN, Lee C-H, Hwang S-Y, Kim D-H, Lee C-G, Park S-J. Thermo-Chemical Treatment for Carcass Disposal and the Application of Treated Carcass as Compost. Applied Sciences. 2021; 11(1):431. https://doi.org/10.3390/app11010431
Chicago/Turabian StyleLee, Jae-In, Eun-Ji Cho, Fritz Ndumbe Lyonga, Chang-Hee Lee, Sue-Yun Hwang, Dock-Hwan Kim, Chang-Gu Lee, and Seong-Jik Park. 2021. "Thermo-Chemical Treatment for Carcass Disposal and the Application of Treated Carcass as Compost" Applied Sciences 11, no. 1: 431. https://doi.org/10.3390/app11010431
APA StyleLee, J. -I., Cho, E. -J., Lyonga, F. N., Lee, C. -H., Hwang, S. -Y., Kim, D. -H., Lee, C. -G., & Park, S. -J. (2021). Thermo-Chemical Treatment for Carcass Disposal and the Application of Treated Carcass as Compost. Applied Sciences, 11(1), 431. https://doi.org/10.3390/app11010431