Development of Fluorescence Imaging Technique to Detect Fresh-Cut Food Organic Residue on Processing Equipment Surface
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. System and Data Acquisition
2.3. Data Analysis
3. Results and Discussion
3.1. Fluorescence Characteristics of Stainless Steel and Fruits Samples
3.2. Optimal Waveband Selection Using ANOVA Analysis Results
3.2.1. Development of Single-Waveband Algorithm (SWA)
Residue Detection Algorithm for Honeydew
Residue Detection Algorithm for Orange
Residue Detection Algorithm for Apple
Residue Detection Algorithm for Watermelon
3.2.2. Development of the Two-Waveband Ratio Algorithm (TWRA)
Residue Detection Algorithm for Honeydew
Residue Detection Algorithm for Orange
Residue Detection Algorithm for Apple
Residue Detection Algorithm for Watermelon
3.2.3. Development of Global Imaging Algorithm for Detecting Residues
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, H.-H.; Hong, S.-I.; Kim, D. Microbiological and visual quality of fresh-cut cabbage as affected by packaging treatments. Food Sci. Biotechnol. 2011, 20, 229–235. [Google Scholar] [CrossRef]
- Vargas, A.M.; Kim, M.S.; Tao, Y.; Lefcourt, A.M.; Chen, Y.R.; Luo, Y.; Song, Y.; Buchanan, R. Detection of fecal contamination on cantaloupes using hyperspectral fluorescence imagery. J. Food Sci. 2005, 70, e471–e476. [Google Scholar] [CrossRef]
- Mo, C.; Kim, G.; Kim, M.S.; Lim, J.; Lee, S.H.; Lee, H.-S.; Cho, B.-K. Discrimination methods for biological contaminants in fresh-cut lettuce based on VNIR and NIR hyperspectral imaging. Infrared Phys. Technol. 2017, 85, 1–12. [Google Scholar] [CrossRef]
- Lopez-Velasco, G.; Sbodio, A.; Tomás-Callejas, A.; Wei, P.; Tan, K.H.; Suslow, T.V. Assessment of root uptake and systemic vine-transport of Salmonella enterica sv. Typhimurium by melon (Cucumis melo) during field production. Int. J. Food Microbiol. 2012, 158, 65–72. [Google Scholar] [CrossRef]
- Qadri, O.S.; Yousuf, B.; Srivastava, A.K.; Yildiz, F. Fresh-cut fruits and vegetables: Critical factors influencing microbiology and novel approaches to prevent microbial risks—A review. Cogent Food Agric. 2015, 1, 1–11. [Google Scholar] [CrossRef]
- Wiederoder, M.S.; Lefcourt, A.M.; Kim, M.S.; Lo, Y.M. Detection of fresh-cut produce processing residues on food contact surface materials using hyperspectral imaging. J. Food Meas. Charact. 2012, 6, 48–55. [Google Scholar] [CrossRef]
- Kuda, T.; Shibata, G.; Takahashi, H.; Kimura, B. Effect of quantity of food residues on resistance to desiccation of food-related pathogens adhered to a stainless steel surface. Food Microbiol. 2015, 46, 234–238. [Google Scholar] [CrossRef]
- Kuda, T.; Koyanagi, T.; Shibata, G.; Takahashi, H.; Kimura, B. Effect of carrot residue on the desiccation and disinfectant resistances of food related pathogens adhered to a stainless steel surfaces. LWT Food Sci. 2016, 74, 251–254. [Google Scholar] [CrossRef]
- Wiederoder, M.S. Portable Hyperspectral Imaging Device for Surface Sanitation Verification in the Produce Industry. Master’s Thesis, University of Maryland, Collage Park, MD, USA, 2011. [Google Scholar]
- Bonah, E.; Huang, X.; Aheto, J.H.; Osae, R. Application of hyperspectral imaging as a nondestructive technique for foodborne pathogen detection and characterization. Foodborne Pathog. Dis. 2019, 16, 712–722. [Google Scholar] [CrossRef]
- Zhao, X.; Lin, C.-W.; Wang, J.; Oh, D.H. Advances in rapid detection methods for doodborne pathogens. J. Microbiol. Biotechnol. 2014, 24, 297–312. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Li, M.; Xu, Z. Detection of foodborne pathogens by surface enhanced raman spectroscopy. Front. Microbiol. 2018, 9, 1236. [Google Scholar] [CrossRef] [PubMed]
- Law, J.W.-F.; Ab Mutalib, N.-S.; Chan, K.-G.; Lee, L.-H. Rapid methods for the detection of foodborne bacterial pathogens: Principles, applications, advantages and limitations. Front. Microbiol. 2014, 5, 770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiederoder, M.S.; Liu, N.; Lefcourt, A.M.; Kim, M.S.; Martin Lo, Y. Use of a portable hyperspectral imaging system for monitoring the efficacy of sanitation procedures in produce processing plants. J. Food Eng. 2013, 117, 217–226. [Google Scholar] [CrossRef]
- Jun, W.; Kim, M.S.; Lee, K.; Millner, P.; Chao, K. Assessment of bacterial biofilm on stainless steel by hyperspectral fluorescence imaging. Sens. Instrum. Food Qual. Saf. 2009, 3, 41–48. [Google Scholar] [CrossRef]
- Kim, M.S.; Chen, Y.R.; Mehl, P.M. Hyperspectral reflectance and fluorescence imaging system for food quality and safety. Trans. ASAE 2001, 44, 721. [Google Scholar] [CrossRef]
- Qin, J.; Chao, K.; Kim, M.S.; Lu, R.; Burks, T.F. Hyperspectral and multispectral imaging for evaluating food safety and quality. J. Food Eng. 2013, 118, 157–171. [Google Scholar] [CrossRef]
- Lee, W.-H.; Kim, M.S.; Lee, H.; Delwiche, S.R.; Bae, H.; Kim, D.-Y.; Cho, B.-K. Hyperspectral near-infrared imaging for the detection of physical damages of pear. J. Food Eng. 2014, 130, 1–7. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Elmasry, G.; Sun, D.-W.; Allen, P. Non-destructive prediction and visualization of chemical composition in lamb meat using NIR hyperspectral imaging and multivariate regression. Innov. Food Sci. Emerg. Technol. 2012, 16, 218–226. [Google Scholar] [CrossRef]
- Elmasry, G.; Kamruzzaman, M.; Sun, D.-W.; Allen, P. Principles and applications of hyperspectral imaging in quality evaluation of agro-food products: A review. Crit. Rev. Food Sci. Nutr. 2012, 52, 999–1023. [Google Scholar] [CrossRef]
- Xing, J.; Bravo, C.; Jancsók, P.T.; Ramon, H.; De Baerdemaeker, J. Detecting bruises on ‘golden delicious’ apples using hyperspectral imaging with multiple wavebands. Biosyst. Eng. 2005, 90, 27–36. [Google Scholar] [CrossRef]
- Cho, B.-K.; Kim, M.S.; Baek, I.-S.; Kim, D.-Y.; Lee, W.-H.; Kim, J.; Bae, H.; Kim, Y.-S. Detection of cuticle defects on cherry tomatoes using hyperspectral fluorescence imagery. Postharvest Biol. Technol. 2013, 76, 40–49. [Google Scholar] [CrossRef]
- Qin, J.; Kim, M.S.; Chao, K.; Chan, D.E.; Delwiche, S.R.; Cho, B.-K. Line-scan hyperspectral imaging techniques for food safety and quality applications. Appl. Sci. 2017, 7, 125. [Google Scholar] [CrossRef] [Green Version]
- Qin, J.; Burks, T.F.; Kim, M.S.; Chao, K.; Ritenour, M.A. Citrus canker detection using hyperspectral reflectance imaging and PCA-based image classification method. Sens. Instrum. Food Qual. Saf. 2008, 2, 168–177. [Google Scholar] [CrossRef]
- Lee, M.S.; Kim, K.S.; Min, G.; Son, D.H.; Kim, J.E.; Kim, S.C. Recent trends of hyperspectral imaging technology. ETRI 2019, 34, 86–97. [Google Scholar] [CrossRef]
- Cho, H.; Lee, H.; Kim, S.-Y.; Kim, D.; Lefcourt, A.M.; Chan, D.E.; Chung, S.; Kim, M.S. Potential application of fluorescence imaging for assessing fecal contamination of soil and compost maturity. Appl. Sci. 2016, 6, 243. [Google Scholar] [CrossRef] [Green Version]
- Qin, J.; Chao, K.; Kim, M.S.; Kang, S.; Cho, B.-K.; Jun, W. Detection of organic residues on poultry processing equipment surfaces by LED-induced fluorescence imaging. Appl. Eng. Agric. 2011, 27, 153–161. [Google Scholar] [CrossRef]
- Zhang, R.; Ying, Y.; Rao, X.; Li, J. Quality and safety assessment of food and agricultural products by hyperspectral fluorescence imaging. J. Sci. Food Agric. 2012, 92, 2397–2408. [Google Scholar] [CrossRef]
- Everard, C.D.; Kim, M.S.; Lee, H. A comparison of hyperspectral reflectance and fluorescence imaging techniques for detection of contaminants on spinach leaves. J. Food Eng. 2014, 143, 139–145. [Google Scholar] [CrossRef]
- Mo, C.; Kim, G.; Kim, M.S.; Lim, J.; Lee, K.; Lee, W.-H.; Cho, B.-K. On-line fresh-cut lettuce quality measurement system using hyperspectral imaging. Biosyst. Eng. 2017, 156, 38–50. [Google Scholar] [CrossRef]
- Cho, B.; Kim, M.S.; Chao, K.; Lawrence, K.; Park, B.; Kim, K. Detection of fecal residue on poultry carcasses by laser-induced fluorescence imaging. J. Food Sci. 2009, 74, E154–E159. [Google Scholar] [CrossRef]
- Frank, J.F.; Chmielewski, R. Influence of surface finish on the cleanability of stainless steel. J. Food Prot. 2001, 64, 1178–1182. [Google Scholar] [CrossRef] [PubMed]
- Mo, C.; Kim, M.S.; Kim, G.; Cheong, E.J.; Yang, J.; Lim, J. Detecting drought stress in soybean plants using hyperspectral fluorescence imaging. J. Biosyst. Eng. 2015, 40, 335–344. [Google Scholar] [CrossRef] [Green Version]
- Ryerson: Metal Processing & Distribution. Finish, Finish, Finish: 3 Stainless Steel Finishes. Available online: https://www.ryerson.com/resource/the-gauge/three-layers-of-stainless-steel-polish (accessed on 24 December 2020).
- Tadmor, Y.; Burger, J.; Yaakov, I.; Feder, A.; Libhaber, S.E.; Portnoy, V.; Meir, A.; Tzuri, G.; Sa’Ar, U.; Rogachev, I.; et al. Genetics of flavonoid, carotenoid, and chlorophyll pigments in melon fruit rinds. J. Agric. Food Chem. 2010, 58, 10722–10728. [Google Scholar] [CrossRef] [PubMed]
- Gross, J. Pigments in Vegetables: Chlorohylls and Carotenoids; Van Nostrand Reinhold: New York, NY, USA, 1991. [Google Scholar]
- Merzlyak, M.N.; Melø, T.B.; Naqvi, K.R. Effect of anthocyanins, carotenoids, and flavonols on chlorophyll fluorescence excitation spectra in apple fruit: Signature analysis, assessment, modelling, and relevance to photoprotection. J. Exp. Bot. 2008, 59, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Lamb, J.J.; Rokke, G.; Hohmann-Marriott, M.F. Chlorophyll fluorescence emission spectroscopy of oxygenic organisms at 77 K. Photosynthetica 2018, 56, 105–124. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Shen, J.; Huang, Y.; Liu, Z.; Zhuang, H. Graphene quantum dots and enzyme-coupled biosensor for highly sensitive determination of hydrogen peroxide and glucose. Int. J. Mol. Sci. 2018, 19, 1696. [Google Scholar] [CrossRef] [Green Version]
- Muharfiza; Al Riza, D.F.; Saito, Y.; Itakura, K.; Kohno, Y.; Suzuki, T.; Kuramoto, M.; Kondo, N. Monitoring of fluorescence characteristics of satsuma mandarin (Citrus unshiu Marc.) during the maturation period. Horticulturae 2017, 3, 51. [Google Scholar] [CrossRef] [Green Version]
- Yoo, K.S.; Bang, H.; Lee, E.J.; Crosby, K.M.; Patil, B.S. Variation of carotenoid, sugar, and ascorbic acid concentrations in watermelon genotypes and genetic analysis. Hortic. Environ. Biotechnol. 2012, 53, 552–560. [Google Scholar] [CrossRef]
- Mukai, R.; Terao, J.; Shirai, Y.; Saito, N.; Ashida, H. Determination of subcellular localization of flavonol in cultured cells by laser scanning. In Laser Scanning, Theory and Applications; Wang, C.-C., Ed.; IntechOpen, Ltd.: London, UK, 2011. [Google Scholar] [CrossRef] [Green Version]
- Włodarska, K.; Pawlak-Lemańska, K.; Khmelinskii, I.; Sikorska, E. Explorative study of apple juice fluorescence in relation to antioxidant properties. Food Chem. 2016, 210, 593–599. [Google Scholar] [CrossRef] [Green Version]
Dilution | 2B-Finished SSS | |||||||
---|---|---|---|---|---|---|---|---|
Waveband [nm] | F-Value | Calibration | Validation | |||||
No. of Spectra | TH | Accuracy [%] | No. of Spectra | Accuracy [%] | ||||
Honeydew | original | 492 | 106,900 | 1548 | 1983 | 92.92 | 386 | 92.94 |
1:5 | 472 | 43,074 | 1570 | 827 | 91.56 | 392 | 91.45 | |
1:10 | 488 | 11,786 | 1604 | 545 | 86.86 | 400 | 86.99 | |
1:20 | 484 | 3666 | 1617 | 362 | 86.33 | 404 | 83.99 | |
1:50 | 648 | 1437 | 1630 | 1742 | 75.78 | 407 | 70.46 | |
1:100 | 644 | 353 | 1536 | 1563 | 69.08 | 383 | 67.25 | |
Orange | original | 488 | 112,939 | 1290 | 1891 | 92.30 | 322 | 92.55 |
1:5 | 468 | 78,675 | 1620 | 1242 | 90.88 | 405 | 91.04 | |
1:10 | 468 | 32,946 | 1590 | 800 | 87.52 | 397 | 87.68 | |
1:20 | 484 | 16,047 | 1592 | 495 | 85.40 | 398 | 85.67 | |
1:50 | 480 | 3090 | 1444 | 332 | 80.08 | 360 | 80.01 | |
1:100 | 644 | 464 | 1476 | 1585 | 72.55 | 368 | 72.67 | |
Apple | original | 488 | 15,440 | 1504 | 481 | 93.38 | 375 | 93.37 |
1:5 | 488 | 6618 | 1731 | 415 | 86.16 | 432 | 85.29 | |
1:10 | 488 | 2913 | 1533 | 382 | 85.16 | 383 | 83.86 | |
1:20 | 648 | 1579 | 1519 | 1707 | 82.79 | 379 | 81.30 | |
1:50 | 644 | 745 | 1220 | 1556 | 80.06 | 305 | 75.54 | |
1:100 | 648 | 536 | 1131 | 1825 | 73.65 | 282 | 73.00 | |
Watermelon | original | 488 | 24,763 | 1687 | 861 | 85.35 | 421 | 85.73 |
1:5 | 468 | 14,236 | 1592 | 487 | 82.74 | 398 | 82.71 | |
1:10 | 484 | 4000 | 1535 | 382 | 82.94 | 383 | 82.78 | |
1:20 | 472 | 1324 | 1448 | 260 | 82.55 | 362 | 78.10 | |
1:50 | 644 | 796 | 1420 | 1555 | 75.48 | 355 | 70.55 | |
1:100 | 644 | 149 | 1408 | 1642 | 67.53 | 351 | 60.02 |
Dilution | #4-Finished SSS | |||||||
---|---|---|---|---|---|---|---|---|
Waveband [nm] | F-Value | Calibration | Validation | |||||
No. of Spectra | TH | Accuracy[%] | No. of Spectra | Accuracy[%] | ||||
Honeydew | original | 508 | 59,703 | 1702 | 1857 | 92.55 | 425 | 92.54 |
1:5 | 488 | 11,384 | 1636 | 688 | 92.25 | 408 | 92.19 | |
1:10 | 468 | 6652 | 1531 | 429 | 90.68 | 382 | 91.91 | |
1:20 | 484 | 2110 | 2052 | 459 | 90.50 | 512 | 89.88 | |
1:50 | 484 | 314 | 1460 | 388 | 69.73 | 365 | 63.42 | |
1:100 | 660 | 1318 | 1465 | 483 | 68.70 | 366 | 65.64 | |
Orange | original | 492 | 193,159 | 1844 | 620 | 98.23 | 461 | 98.10 |
1:5 | 464 | 66,281 | 1771 | 1422 | 91.15 | 442 | 91.37 | |
1:10 | 464 | 18,748 | 1592 | 1003 | 91.47 | 397 | 91.66 | |
1:20 | 464 | 10,785 | 1987 | 454 | 92.98 | 496 | 92.74 | |
1:50 | 668 | 15,079 | 1527 | 577 | 92.72 | 381 | 92.85 | |
1:100 | 660 | 17,562 | 1775 | 994 | 89.81 | 443 | 89.75 | |
Apple | original | 584 | 9260 | 1672 | 677 | 85.81 | 418 | 85.17 |
1:5 | 480 | 3512 | 1861 | 344 | 82.48 | 465 | 79.47 | |
1:10 | 468 | 1509 | 1763 | 338 | 83.55 | 440 | 72.34 | |
1:20 | 652 | 1073 | 2076 | 433 | 80.63 | 518 | 77.48 | |
1:50 | 656 | 359 | 1570 | 437 | 71.83 | 392 | 70.04 | |
1:100 | 672 | 2521 | 1431 | 487 | 70.02 | 357 | 69.06 | |
Watermelon | original | 460 | 26,669 | 2246 | 791 | 89.04 | 561 | 89.22 |
1:5 | 464 | 5731 | 1555 | 434 | 87.71 | 388 | 86.91 | |
1:10 | 464 | 2845 | 1551 | 340 | 88.54 | 387 | 86.03 | |
1:20 | 460 | 1401 | 1984 | 290 | 83.36 | 495 | 77.82 | |
1:50 | 652 | 928 | 1576 | 409 | 77.91 | 394 | 69.30 | |
1:100 | 672 | 2414 | 1471 | 486 | 71.74 | 367 | 70.76 |
Dilution | 2B-Finished SSS | ||||||||
---|---|---|---|---|---|---|---|---|---|
Ratio Waveband [nm] | F-Value | Calibration | Validation | ||||||
No. of Spectra | TH | Accuracy [%] | No. of Spectra | Accuracy [%] | |||||
Honeydew | original | 460 | 656 | 2396 | 1548 | 0.98 | 91.79 | 386 | 92.44 |
1:5 | 460 | 660 | 2089 | 1570 | 0.40 | 90.56 | 392 | 91.63 | |
1:10 | 460 | 676 | 1306 | 1604 | 0.34 | 87.51 | 400 | 88.67 | |
1:20 | 472 | 652 | 809 | 1617 | 0.18 | 85.40 | 404 | 84.36 | |
1:50 | 476 | 656 | 344 | 1630 | 0.15 | 79.19 | 407 | 78.23 | |
1:100 | 472 | 652 | 95 | 1536 | 0.14 | 74.84 | 383 | 73.43 | |
Orange | original | 456 | 660 | 2614 | 1290 | 0.43 | 92.30 | 322 | 92.36 |
1:5 | 460 | 652 | 2400 | 1620 | 0.63 | 90.96 | 405 | 91.84 | |
1:10 | 472 | 640 | 2011 | 1590 | 0.44 | 90.06 | 397 | 90.36 | |
1:20 | 460 | 660 | 1358 | 1592 | 0.28 | 88.48 | 398 | 88.62 | |
1:50 | 468 | 652 | 767 | 1444 | 0.17 | 84.90 | 360 | 85.79 | |
1:100 | 472 | 644 | 270 | 1476 | 0.17 | 74.37 | 368 | 72.02 | |
Apple | original | 472 | 644 | 2058 | 1504 | 0.21 | 93.12 | 375 | 92.90 |
1:5 | 464 | 640 | 505 | 1731 | 0.70 | 89.07 | 432 | 89.53 | |
1:10 | 472 | 644 | 1213 | 1533 | 0.20 | 88.22 | 383 | 87.53 | |
1:20 | 484 | 656 | 1084 | 1519 | 0.16 | 87.63 | 379 | 83.90 | |
1:50 | 488 | 648 | 958 | 1220 | 0.19 | 83.95 | 305 | 76.09 | |
1:100 | 472 | 652 | 172 | 1131 | 0.11 | 77.02 | 282 | 72.91 | |
Watermelon | original | 460 | 656 | 1237 | 1687 | 0.56 | 87.31 | 421 | 93.31 |
1:5 | 464 | 640 | 1178 | 1592 | 0.41 | 87.15 | 398 | 90.67 | |
1:10 | 472 | 632 | 1131 | 1535 | 0.32 | 87.31 | 383 | 87.45 | |
1:20 | 464 | 644 | 654 | 1448 | 0.20 | 84.39 | 362 | 82.06 | |
1:50 | 468 | 648 | 161 | 1420 | 0.18 | 77.57 | 355 | 80.33 | |
1:100 | 472 | 580 | 105 | 1408 | 0.70 | 64.71 | 351 | 63.36 |
Dilution | #4-Finished SSS | ||||||||
---|---|---|---|---|---|---|---|---|---|
Ratio Waveband [nm] | F-Value | Calibration | Validation | ||||||
No. of Spectra | TH | Accuracy [%] | No. of Spectra | Accuracy [%] | |||||
Honeydew | original | 612 | 676 | 3043 | 1702 | 0.55 | 90.64 | 425 | 90.61 |
1:5 | 464 | 640 | 1349 | 1636 | 1.27 | 90.43 | 408 | 88.28 | |
1:10 | 464 | 640 | 1053 | 1531 | 1.11 | 90.53 | 382 | 87.74 | |
1:20 | 476 | 612 | 126 | 2052 | 0.74 | 82.77 | 512 | 81.93 | |
1:50 | 580 | 648 | 54 | 1460 | 0.50 | 62.19 | 365 | 62.46 | |
1:100 | 540 | 664 | 311 | 1465 | 0.33 | 59.61 | 366 | 59.60 | |
Orange | original | 472 | 612 | 387 | 1844 | 0.29 | 97.98 | 461 | 97.86 |
1:5 | 476 | 664 | 1942 | 1771 | 2.06 | 91.03 | 442 | 91.94 | |
1:10 | 480 | 612 | 1326 | 1592 | 1.64 | 90.63 | 397 | 89.28 | |
1:20 | 464 | 600 | 1112 | 1987 | 1.13 | 89.03 | 496 | 89.94 | |
1:50 | 608 | 676 | 700 | 1527 | 0.22 | 88.35 | 381 | 88.14 | |
1:100 | 560 | 664 | 1779 | 1775 | 0.50 | 85.60 | 443 | 87.73 | |
Apple | original | 564 | 676 | 638 | 1672 | 0.14 | 84.12 | 418 | 84.18 |
1:5 | 456 | 564 | 256 | 1861 | 0.26 | 74.19 | 465 | 74.37 | |
1:10 | 472 | 548 | 104 | 1763 | 0.22 | 74.03 | 440 | 73.93 | |
1:20 | 500 | 612 | 70 | 2076 | 0.41 | 64.86 | 518 | 64.74 | |
1:50 | 504 | 612 | 81 | 1570 | 1.48 | 65.11 | 392 | 61.30 | |
1:100 | 488 | 656 | 280 | 1431 | 0.24 | 58.17 | 357 | 58.05 | |
Watermelon | original | 464 | 728 | 428 | 2246 | 0.59 | 96.53 | 561 | 96.66 |
1:5 | 464 | 616 | 1452 | 1555 | 1.08 | 90.52 | 388 | 84.17 | |
1:10 | 488 | 580 | 135 | 1551 | 0.55 | 89.31 | 387 | 89.81 | |
1:20 | 488 | 580 | 53 | 1984 | 0.55 | 88.59 | 495 | 89.15 | |
1:50 | 580 | 676 | 158 | 1576 | 2.48 | 82.60 | 394 | 82.84 | |
1:100 | 548 | 660 | 492 | 1471 | 1.01 | 74.52 | 367 | 76.86 |
Total | 2B-Finished SSS | #4-Finished SSS | ||||||
---|---|---|---|---|---|---|---|---|
No of Sample | Single Waveband [nm] | TH | Accuracy [%] | No of Sample | Single Waveband [nm] | TH | Accuracy [%] | |
original | 7533 | 488 | 482 | 93.37 | 9329 | 460 | 670 | 84.43 |
1:5 | 8140 | 484 | 670 | 92.42 | 8526 | 464 | 611 | 90.74 |
1:10 | 7825 | 484 | 545 | 90.91 | 8043 | 464 | 594 | 83.31 |
1:20 | 7719 | 484 | 382 | 83.34 | 10,120 | 464 | 549 | 75.71 |
1:50 | 7141 | 644 | 1633 | 62.51 | 7665 | 652 | 301 | 68.41 |
1:100 | 6935 | 644 | 1685 | 55.81 | 7675 | 660 | 332 | 80.95 |
Total | 2B-Finished SSS | #4-Finished SSS | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
No of Sample | Ratio Waveband [nm] | TH | Accuracy [%] | No of Sample | Ratio Waveband [nm] | TH | Accuracy [%] | |||
original | 7533 | 460.8 | 656.4 | 0.36 | 92.49 | 9329 | 488.8 | 676.4 | 1.31 | 75.80 |
1:5 | 8140 | 460.8 | 652.4 | 0.32 | 88.07 | 8526 | 464.8 | 612.5 | 0.42 | 54.97 |
1:10 | 7825 | 472.8 | 644.5 | 0.30 | 86.53 | 8043 | 476.8 | 580.6 | 1.69 | 65.63 |
1:20 | 7719 | 468.8 | 648.4 | 0.28 | 86.92 | 10,120 | 476.8 | 612.5 | 0.72 | 57.57 |
1:50 | 7141 | 468.8 | 652.4 | 0.28 | 76.52 | 7665 | 580.6 | 676.4 | 0.45 | 60.05 |
1:100 | 6935 | 472.8 | 652.4 | 0.27 | 61.14 | 7675 | 560.6 | 664.4 | 0.24 | 58.09 |
Dilution | 2B-Finished SSS | #4-Finished SSS | |||||
---|---|---|---|---|---|---|---|
No. of Droplet | No. of Detection | Accuracy [%] | No. of Droplet | No. of Detection | Accuracy [%] | ||
Honeydew | original | 90 | 90 | 100.0 | 90 | 90 | 100.0 |
1:5 | 90 | 90 | 100.0 | 90 | 90 | 100.0 | |
1:10 | 90 | 90 | 100.0 | 90 | 90 | 100.0 | |
1:20 | 90 | 90 | 100.0 | 90 | 87 | 96.67 | |
1:50 | 90 | 90 | 100.0 | 90 | 86 | 95.56 | |
1:100 | 90 | 86 | 95.56 | 90 | 83 | 92.22 | |
Orange | original | 90 | 90 | 100.0 | 90 | 90 | 100.0 |
1:5 | 90 | 90 | 100.0 | 90 | 90 | 100.0 | |
1:10 | 90 | 90 | 100.0 | 90 | 90 | 100.0 | |
1:20 | 90 | 90 | 100.0 | 90 | 90 | 100.0 | |
1:50 | 90 | 90 | 100.0 | 90 | 90 | 100.0 | |
1:100 | 90 | 90 | 100.0 | 90 | 90 | 100.0 | |
Apple | original | 90 | 90 | 100.0 | 90 | 90 | 100.0 |
1:5 | 90 | 90 | 100.0 | 90 | 90 | 100.0 | |
1:10 | 90 | 90 | 100.0 | 90 | 90 | 100.0 | |
1:20 | 90 | 90 | 100.0 | 90 | 78 | 86.67 | |
1:50 | 90 | 90 | 100.0 | 90 | 78 | 86.67 | |
1:100 | 90 | 85 | 94.44 | 90 | 74 | 82.22 | |
Watermelon | original | 90 | 90 | 100.0 | 90 | 90 | 100.0 |
1:5 | 90 | 90 | 100.0 | 90 | 90 | 100.0 | |
1:10 | 90 | 90 | 100.0 | 90 | 90 | 100.0 | |
1:20 | 90 | 90 | 100.0 | 90 | 84 | 93.33 | |
1:50 | 90 | 87 | 96.67 | 90 | 84 | 93.33 | |
1:100 | 90 | 81 | 90.00 | 90 | 75 | 83.33 | |
Total sample | original | 360 | 360 | 100.0 | 360 | 360 | 100.0 |
1:5 | 360 | 360 | 100.0 | 360 | 360 | 100.0 | |
1:10 | 360 | 360 | 100.0 | 360 | 360 | 100.0 | |
1:20 | 360 | 360 | 100.0 | 360 | 339 | 94.17 | |
1:50 | 360 | 357 | 99.17 | 360 | 338 | 93.89 | |
1:100 | 360 | 342 | 95.00 | 360 | 322 | 89.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, C.; Mo, C.; Seo, Y.; Lim, J.; Baek, I.; Kim, M.S. Development of Fluorescence Imaging Technique to Detect Fresh-Cut Food Organic Residue on Processing Equipment Surface. Appl. Sci. 2021, 11, 458. https://doi.org/10.3390/app11010458
Hwang C, Mo C, Seo Y, Lim J, Baek I, Kim MS. Development of Fluorescence Imaging Technique to Detect Fresh-Cut Food Organic Residue on Processing Equipment Surface. Applied Sciences. 2021; 11(1):458. https://doi.org/10.3390/app11010458
Chicago/Turabian StyleHwang, Chansong, Changyeun Mo, Youngwook Seo, Jongguk Lim, Insuck Baek, and Moon S. Kim. 2021. "Development of Fluorescence Imaging Technique to Detect Fresh-Cut Food Organic Residue on Processing Equipment Surface" Applied Sciences 11, no. 1: 458. https://doi.org/10.3390/app11010458
APA StyleHwang, C., Mo, C., Seo, Y., Lim, J., Baek, I., & Kim, M. S. (2021). Development of Fluorescence Imaging Technique to Detect Fresh-Cut Food Organic Residue on Processing Equipment Surface. Applied Sciences, 11(1), 458. https://doi.org/10.3390/app11010458