On Finding the Right Sampling Line Height through a Parametric Study of Gas Dispersion in a NVB
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wind Tunnel Measurements
2.1.1. The Wind Tunnel in General
2.1.2. Velocity, Gas Source Characteristics, and Sampling Positions of the Gas
2.2. CFD Validation for Gas Dispersion
2.2.1. Domain Dimension and Boundary Conditions
2.2.2. Grid Independence
2.2.3. Turbulence Models and Solver Details
2.2.4. Turbulent Schmidt Number Definition and Dispersion Rate
2.3. CFD Model of Barn with AOZ
2.3.1. Porous Model
2.3.2. Release Gas Position
2.3.3. Boundary Conditions: Velocity, RiValues
2.3.4. Sampling Strategy for Gas Concentration Evaluation of the Study
3. Results and Discussion
3.1. Influence of the Sct-Number
3.2. Mixing Gas Concentration at Different Heights
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
CFD | Computational fluid dynamics |
NVB | Naturally ventilated barns |
RANS | Reynolds-averaged Navier–Stokes |
ABLWT | Atmospheric boundary layer wind tunnel |
AOZ | Animal-occupied zones |
References
- Janke, D.; Willink, D.; Ammon, C.; Hempel, S.; Schrade, S.; Demeyer, P.; Hartung, E.; Amon, B.; Ogink, N.; Amon, T. Calculation of ventilation rates and ammonia emissions: Comparison of sampling strategies for a naturally ventilated dairy barn. Biosyst. Eng. 2020, 198, 15–30. [Google Scholar] [CrossRef]
- Saha, C.; Fiedler, M.; Ammon, C.; Berg, W.; Loebsin, C.; Amon, B.; Amon, T. Uncertainty in calculating air exchange rate of naturally ventilated dairy building based on point concentrations. Environ. Eng. Manag. J. 2014, 13, 2349–2355. [Google Scholar] [CrossRef]
- Mendes, L.B.; Edouard, N.; Ogink, N.W.; van Dooren, H.J.C.; de Fátima, F.; Tinôco, I.; Mosquera, J. Spatial variability of mixing ratios of ammonia and tracer gases in a naturally ventilated dairy cow barn. Biosyst. Eng. 2015, 129, 360–369. [Google Scholar] [CrossRef]
- VERA. VERA Test Protocol for Livestock Housing and Management Systems; Technical Report; European Union: Brussels, Belgium, 2018. [Google Scholar]
- Drewry, J.L.; Choi, C.Y.; Powell, J.M.; Luck, B.D. Computational model of methane and ammonia emissions from dairy barns: Development and validation. Comput. Electron. Agric. 2018, 149, 80–89. [Google Scholar] [CrossRef]
- Blocken, B. LES over RANS in building simulation for outdoor and indoor applications: A foregone conclusion? Build. Simul. 2018, 11, 1–50. [Google Scholar] [CrossRef] [Green Version]
- Gualtieri, C.; Angeloudis, A.; Bombardelli, F.; Jha, S.; Stoesser, T. On the Values for the Turbulent Schmidt Number in Environmental Flows. Fluids 2017, 2, 17. [Google Scholar] [CrossRef] [Green Version]
- Gromke, C.; Buccolieri, R.; Di Sabatino, S.; Ruck, B. Dispersion study in a street canyon with tree planting by means of wind tunnel and numerical investigations—Evaluation of CFD data with experimental data. Atmos. Environ. 2008, 42, 8640–8650. [Google Scholar] [CrossRef]
- Gorlé, C.; Beeck, J.; Rambaud, P. Dispersion in the Wake of a Rectangular Building: Validation of Two Reynolds-Averaged Navier–Stokes Modelling Approaches. Bound. Layer Meteorol. 2010, 137, 115–133. [Google Scholar] [CrossRef]
- Janke, D.; Yi, Q.; Thormann, L.; Hempel, S.; Amon, B.; Nosek, Š.; van Overbeke, P.; Amon, T. Direct Measurements of the Volume Flow Rate and Emissions in a Large Naturally Ventilated Building. Sensors 2020, 20, 6223. [Google Scholar] [CrossRef] [PubMed]
- Lanfrit, M. Best Practice Guidelines for Handling Automotive External Aerodynamics with FLUENT; Fluent Deutschland GmbH: Darmstadt, Germany, 2005. [Google Scholar]
- Doumbia, M.; Hempel, S.; Janke, D.; Amon, T. Prediction of the Local Air Exchange Rate in Animal Occupied Zones of a Naturally Ventilated Barn. In Proceedings of the XXXVIII CIOSTA & CIGR V; XXXVIII CIOSTA & CIGR V International Conference, Rhodes Island, Greece, 24–26 June 2019; pp. 29–34. [Google Scholar]
- Doumbia, E.M.; Janke, D.; Yi, Q.; Amon, T.; Kriegel, M.; Hempel, S. CFD modelling of an animal occupied zone using an anisotropic porous medium model with velocity depended resistance parameters. Comput. Electron. Agric. 2021, 181, 105950. [Google Scholar] [CrossRef]
- Van Hooff, T.; Blocken, B.; Gousseau, P.; van Heijst, G. Counter-gradient diffusion in a slot-ventilated enclosure assessed by LES and RANS. Comput. Fluids 2014, 96, 63–75. [Google Scholar] [CrossRef]
- Pedersen, S.; Sällvik, K. 4th Report of Working Group on Climatization of Animal Houses Heat and Moisture Production at Animal and House Levels; Technical Report; Research Centre Bygholm: Horsens, Denmark, 2002; p. 343. [Google Scholar]
- Marek, R.; Nitsche, K. Praxis der Wärmeübertragung Grundlagen—Anwendungen—Übungsaufgaben; 4., Neu Bearbeitete Auflage; Carl Hanser Verlag GmbH & Co. KG: Deggendorf, Germany, 2015. [Google Scholar]
- Lin, C.; Ooka, R.; Kikumoto, H.; Sato, T.; Arai, M. CFD simulations on high-buoyancy gas dispersion in the wake of an isolated cubic building using steady RANS model and LES. Build. Environ. 2020, 188, 107478. [Google Scholar] [CrossRef]
- Tominaga, Y.; Stathopoulos, T. CFD modeling of pollution dispersion in a street canyon: Comparison between LES and RANS. J. Wind Eng. Ind. Aerodyn. 2011, 99, 340–348. [Google Scholar] [CrossRef] [Green Version]
Lines | Points |
---|---|
Line 1 | P01; P04; P07 |
Line 2 | P02; P05; P08 |
Line 3 | P03; P06; P09 |
Line 4 | P10; P13; P16 |
Line 5 | P11; P14; P17 |
Line 6 | P12; P15; P18 |
Domain Cell Number | All Points’ Mean Concentration Rel. Diff. in % |
---|---|
1,158,870 | |
2,728,878 | 26.6% |
3,319,102 | 5.8% |
Inflow Direction | North Side | South Side | West Side | East Side |
---|---|---|---|---|
0 deg | velocity inlet | pressure outlet | wall | wall |
45 deg | velocity inlet | pressure outlet | velocity inlet | pressure outlet |
90 deg | Wall | wall | velocity inlet | pressure outlet |
Ri Cases | ||||||
---|---|---|---|---|---|---|
Ri < 0.2 | 0.2 < Ri < 5 | Ri > 5 | ||||
Ri = 0.078 | Ri = 0.198 | Ri = 1.9 | Ri = 3.0 | Ri = 12.0 | Ri = 28.0 | |
T (°C) | 30 | 22 | 15 | 10 | 7 | 0 |
U (m s) | 2.8 | 2.5 | 0.97 | 0.85 | 0.45 | 0.33 |
Season | Summer | Fall-Spring | Winter |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doumbia, E.M.; Janke, D.; Yi, Q.; Zhang, G.; Amon, T.; Kriegel, M.; Hempel, S. On Finding the Right Sampling Line Height through a Parametric Study of Gas Dispersion in a NVB. Appl. Sci. 2021, 11, 4560. https://doi.org/10.3390/app11104560
Doumbia EM, Janke D, Yi Q, Zhang G, Amon T, Kriegel M, Hempel S. On Finding the Right Sampling Line Height through a Parametric Study of Gas Dispersion in a NVB. Applied Sciences. 2021; 11(10):4560. https://doi.org/10.3390/app11104560
Chicago/Turabian StyleDoumbia, E. Moustapha, David Janke, Qianying Yi, Guoqiang Zhang, Thomas Amon, Martin Kriegel, and Sabrina Hempel. 2021. "On Finding the Right Sampling Line Height through a Parametric Study of Gas Dispersion in a NVB" Applied Sciences 11, no. 10: 4560. https://doi.org/10.3390/app11104560
APA StyleDoumbia, E. M., Janke, D., Yi, Q., Zhang, G., Amon, T., Kriegel, M., & Hempel, S. (2021). On Finding the Right Sampling Line Height through a Parametric Study of Gas Dispersion in a NVB. Applied Sciences, 11(10), 4560. https://doi.org/10.3390/app11104560