Heparin-Eluting Tissue-Engineered Bioabsorbable Vascular Grafts
Abstract
:1. Introduction
2. Considerations
3. Heparin Conjugation Methods
3.1. Physical Conjugation
3.1.1. Gas Plasma Methods
3.1.2. Mixing Heparin with Sulfated Biopolymers
3.1.3. Coaxial Electrospinning Technique
3.2. Chemical Conjugation
3.2.1. Covalent Interaction
3.2.2. Electrostatic Interactions
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclosure
Abbreviations
APTT | Activated Partial Thromboplastin Time |
b-FGF | basic Fibroblast Growth Factor, |
DAPI | 4′,6-diamidino-2-phenylindole |
EC | Endothelial Cell |
ECM | Extracellular Matrix |
FDA | Food and Drug Administration |
Hep-NS | Heparin Nanosponges |
HBF-GF | Heparin-binding EGF-like growth factor |
HUVECs | Human Umbilical Vein Endothelial Cells |
PAD | Peripheral Artery Disease |
PLCL | Polylactide-co-epsilon-caprolactone |
PCL | Polycaprolactone |
PGA | Polyglycolic acid |
PLLA | Poly-L-lactide acid |
PU | Polyurethane elastomer |
TIPS | Thermally Induced Phase Separation |
TEVG | Tissue Engineered Vascular Graft |
SEM | Scanning Electron Microscopy |
SMC | Smooth Muscle Cell |
VEGF | Vascular Endothelial Growth Factor |
VSMC | Vascular Smooth Muscle Cell |
XPS | X-ray Photoelectron Spectroscopy |
References
- Ercolani, E.; Del Gaudio, C.; Bianco, A. Vascular tissue engineering of small-diameter blood vessels: Reviewing the electrospinning approach. J. Tissue Eng. Regen. Med. 2015, 9, 861–888. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Feng, Y.; Fang, Z.; Xiao Yuan, W.; Khan, M. Fabrication and characterization of electrospun gelatin-heparin nanofibers as vascular tissue engineering. Macromol. Res. 2013, 21, 860–869. [Google Scholar] [CrossRef]
- Mulloy, B.; Hogwood, J.; Gray, E.; Lever, R.; Page, C.P. Pharmacology of heparin and related drugs. Pharmacol. Rev. 2016, 68, 76–141. [Google Scholar] [CrossRef] [PubMed]
- Zia, F.; Zia, K.M.; Zuber, M.; Tabasum, S.; Rehman, S. Heparin based poly- urethanes: A state-of-the-art review. Int. J. Biol. Macromol. 2016, 84, 101–111. [Google Scholar] [CrossRef]
- Nie, T.; Baldwin, A.; Yamaguchi, N.; Kiick, K.L. Production of heparin-functionalized hydrogels for the development of responsive and controlled growth factor de- livery systems. J. Control. Release 2007, 122, 287–296. [Google Scholar] [CrossRef] [Green Version]
- Zong, Z.; Kim, K.; Fang, D.; Ran, S.; Hsiao, B.; Chu, B. Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymers 2002, 43, 4403–4412. [Google Scholar] [CrossRef]
- Thomas, D.; O’Brien, T.; Pandit, A. Toward Customized Extracellular Niche Engineering: Progress in Cell-Entrapment Technologies. Adv. Mater. 2018, 30. [Google Scholar] [CrossRef]
- Nicolas, J.; Magli, S.; Rabbachin, L.; Sampaolesi, S.; Nicotra, F.; Russo, L. 3D Extracellular Matrix Mimics: Fundamental Concepts and Role of Materilas Chemistry to Influence Stem Cell Fate. Biomacromolecules 2020, 21, 1968–1994. [Google Scholar] [CrossRef]
- Matsuzaki, Y.; Iwaki, R.; Reinhardt, J.W.; Chang, Y.C.; Miyamoto, S.; Kelly, J.; Zbiden, J.; Blum, K.; Mirhaidari, G.; Ulzibayar, A.; et al. The effect of pore diameter on neo-tissue formation in electrospun biodegradable tissue-engineered arterial grafts in a large animal model. Acta Biomater. 2020, 115, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Yoss, H.S.; Kim, T.G.; Park, T.G. Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv. Drug Deliv. Rev. 2009, 61, 1033–1042. [Google Scholar]
- Hchmedien, R.H.; ELbjeirami, W.M.; Gobin, A.S.; West, J.L. Tissue engineered small-diameter vascular grafts. Clin. Plast. Surg. 2003, 30, 507–517. [Google Scholar]
- Tara, S.; Rocco, K.A.; Hibino, N.; Sugiura, T.; Kurobe, H.; Breuer, C.K.; Shinoka, T. Vessel bioengineering. Circ. J. 2014, 78, 12–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escudero, M.C.; Alvarez, L.; Haro, J.; Millan, I.; Jorge, E.; Castillo-Olivares, J.L. Prevention of thrombus formation on biomaterials exposed to blood using different antiplatelet drugs: Experimental study in dogs. J. Biomed. Mater. Res. 1994, 28, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Bertholf, R.L. Proteins and Albumin. Lab. Med. 2014, 45, 25–41. [Google Scholar] [CrossRef] [Green Version]
- Grover, S.P.; Mackman, N. Intrinsic Pathway of Coagulation and Thrombosis Insights From Animal Models. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Wu, X.; Mu, Q.; Chen, B.; Duan, Y.; Geng, X. Heparin-conjugated PCL scaffolds fabricated by electrospinning and loaded with fibroblast growth factor 2. J. Biomater. Sci. Polym. 2011, 22, 389–406. [Google Scholar] [CrossRef]
- Seifu, D.G.; Purnama, A.; Mequanint, K.; Mantovani, D. Small-diameter vascular tissue engineering. Nat. Rev. Cardiol. 2013, 10, 410–421. [Google Scholar] [CrossRef]
- Zhou, M.; Liu, Z.; Wei, Z.; Liu, C.; Qiao, T.; Ran, F. Development and vali- dation of small-diameter vascular tissue from a decellularized scaffold coated with heparin and vascular endothelial growth factor. Artif. Organs 2009, 33, 230–239. [Google Scholar] [CrossRef]
- Liu, T.; Zeng, Z.; Liu, Y.; Wang, J.; Maitz, M.F.; Wang, Y. Surface modification with dopamine and heparin/poly-L-lysine nanoparticles provides a favorable release behavior for the healing of vascular stent lesions. ACS Appl. Mater. Interfaces 2014, 6, 8729–8743. [Google Scholar] [CrossRef]
- Roberts, J.J.; Farrugia, B.L.; Green, R.A.; Rnjak-Kovacina, J.; Martens, P.J. In situ formation of poly (vinyl alcohol)–heparin hydrogels for mild encapsulation and prolonged release of basic fibroblast growth factor and vascular endothelial growth factor. J. Tissue Eng. 2016, 7. [Google Scholar] [CrossRef]
- Liang, Y.; Kiick, K.L. Heparin-functionalized polymeric biomaterials in tissue engineering and drug delivery applications. Acta Biomater. 2014, 10, 1588–1600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aslani, S.; Kabiri, M.; HosseinZadeh, S.; Hanaee-Ahvaz, H.; Taherzadeh, E.S.; Soleimani, M. The applications of heparin in vascular tissue engineering. Microvasc. Res. 2020, 131, 104027. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Sun, S.; Zhao, C. Progress in heparin and heparin-like/mimicking polymer-functionalized biomedical membranes. J. Mater. Chem. B 2014, 2, 7649–7672. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Gao, C.; Han, M.; Liang, H.; Ren, K.; Wang, Y. Preparation and characterization of bacterial cellulose/heparin hybrid nanofiber for potential vascular tissue engineering scaffolds. Polym. Adv. Technol. 2011, 22, 2643–2648. [Google Scholar] [CrossRef]
- Del Gaudio, C.; Baiguera, B.; Boieri, M.; Mazzanti, B.; Ribatti, D.; Bianco, A.; Macchiarini, P. Induction of angiogenesis using vegf releasing genipin crosslinked electrospun gelatin mats. Biomaterials 2013, 34, 7754–7765. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, S.; Qiu, L.; Ke, Q.; Zhai, W.; Mo, X. Heparin loading and preendothelialization in enhancing the patency rate of electrospun small-diameter vascular grafts in a canine model. ACS Appl. Mater. Interfaces 2013, 5, 2220–2226. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Zhang, P.; Sun, X.; Gong, F.; Yang, S.; Shen, L. Synthetic e-PTFE grafts coated with an anti-CD133 antibody-functionalized heparin/collagen multilayer with rapid in vivo endothelialization properties. ACS Appl. Mater. Interfaces 2013, 5, 7360–7369. [Google Scholar]
- Matsuzaki, Y.; Miyamoto, S.; Miyachi, H.; Iwaki, R.; Shoji, T.; Blum, K.; Chang, Y.C.; Kelly, J.; Reinhaldt, J.W.; Nakayama, H.; et al. Improvement of Novel Small-Diameter Tissue Engineered Arterial Graft with Heparin Conjugation. Ann. Thorac. Surg. 2020, 16, 1234–1241. [Google Scholar] [CrossRef]
- Antonova, L.V.; Mironov, A.V.; Yuzhalin, A.E.; Krivkina, E.O.; Shabaev, A.R.; Rezvova, M.A.; Tkachenko, V.O.; Khanova, M.Y.; Sergeeva, T.Y.; Krutitskiy, S.S.; et al. A Brief Report on an Implantation of Small-Caliber Biodegradable Vascular Grafts in a Carotid Artery of the Sheep. Pharmaceuticals 2020, 13, 101. [Google Scholar] [CrossRef]
- Wang, W.; Hu, J.; He, C.; Nie, W.; Feng, W.; Qiu, K. Heparinized PLLA/PLCL nanofibrous scaffold for potential engineering of small-diameter blood vessel: Tunable elasticity and anticoagulation property. J. Biomed. Mater. Res. A 2015, 103, 1784–1797. [Google Scholar] [CrossRef]
- Duan, N.; Geng, X.; Ye, L.; Zhang, A.; Feng, Z.; Guo, L. A vascular tissue engineering scaffold with core–shell structured nano-fiberformed by coaxial electrospinning and its biocompatibility evaluation. Biomed. Mater. 2016, 11, 035007. [Google Scholar] [CrossRef]
- Hoshi, R.A.; Van Lith, R.; Jen, M.C.; Allen, J.B.; Lapidos, K.A.; Ameer, G. The blood and vascular cell compatibility of heparin-modified ePTFE vascular grafts. Biomaterials 2013, 34, 30–41. [Google Scholar] [CrossRef] [Green Version]
- Smith, P.K.; Krohn, R.I.; Hermanson, G.T. Colorimetric method for the assay of heparin content in immobilized heparin preparation. Anal. Biochem. 1980, 109, 466–473. [Google Scholar] [CrossRef]
- D’ilario, L.; Francolini, I.; Martinelli, A.; Piozzi, A. Insight into the Heparin-Toluidine Blue (C.I.Basic Blue17) interaction. Dye. Pigment. 2009, 80, 343–348. [Google Scholar] [CrossRef]
- Jungebluth, P.; Bader, A.; Baiguera, S.; Moller, S.; Jaus, M.; Lim, M.L.; Fried, K.; Kjartansdottir, K.R.; Go, T.; Nave, H.; et al. The concept of in vivo airway tissue engineering. Biomaterials 2012, 33, 4319–4326. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Nelson, T.; Cromeens, B.; Rager, T.; Lannutti, J.; Johnson, J.; Benser, G.E. HB-EGE embedded in PGA/PLLA scaffolds via subcrinical CO2 augments the production of tissue engineered intestine. Biomaterials 2016, 103, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Powell, H.M.; Ayodeji, O.; Summerfield, T.L.; Powell, D.M.; Kniss, D.A.; Tomasko, D.L. Chemotherapeutic implants via subcritical CO2 modification. Biomaterials 2007, 28, 5562–5569. [Google Scholar] [CrossRef] [PubMed]
- Dormer, N.H.; Gupta, V.; Scurto, A.M.; Berkland, C.J.; Detamore, M.S. Effect of different sintering methods on bioactivity and releaseof proteins from PLGA microspheres. Mater. Sci. Eng. C Mater. Biol. Appl. 2013, 33, 4343–4351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antonova, L.V.; Sevostyanova, V.V.; Kutikhin, A.G.; Velikanova, E.A.; Matveeva, V.G.; Glushkova, T.V.; Mironov, A.V.; Krivkina, A.V.; Barbarash, O.L.; Barbarash, L.S. Influence Of bFGF, SDF-1α, or VEGF incorporated into tubular polymer scaffolds on the formation of small-diameter tissue-engineered blood vessel in vivo. Vestn. Transpl. Iskusstv. Organov. 2018, 20, 96–109. [Google Scholar] [CrossRef]
- Yun, Y.R.; Won, J.E.; Jeon, E.; Lee, S.; Kang, W.; Jo, H.; Jang, J.H.; Shin, U.S.; Kim, H.W. Fibroblast growth factors: Biology, function, and application for tissue regeneration. J. Tissue Eng. 2010, 1, 218142. [Google Scholar] [CrossRef]
- Matsuzaki, Y.; Kelly, J.; Shoji, T.; Shinoka, T. The evolution of tissue engineered vascular graft technologies: From preclinical trials to advancing patient care. Appl. Sci. 2019, 9, 1274. [Google Scholar] [CrossRef] [Green Version]
- Rocco, K.A.; Maxfield, M.W.; Best, C.A.; Dean, E.W.; Breuer, C.K. In vivo applications of electrospun tissue-engineered vascular grafts: A review. Tissue Eng. Part B Rev. 2014, 20, 628–640. [Google Scholar] [CrossRef]
- Wang, S.; Mo, X.M.; Jiang, B.J.; Gao, C.J.; Wang, H.S.; Zhuang, Y.G.; Qiu, L.J. Fabrication of small-diameter vascular scaffolds by heparin-bonded P(LLA-CL) composite nanofibers to improve graft patency. Int. J. Nanomed. 2013, 8, 2131–2139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luong-van, E.; Grondahl, L.; Chua, K.N.; Leong, K.W.; Nurcombe, V.; Cool, S.M. Controlled release of heparin from poly(ε-caprolactone) electrospun fibers. Biomaterials 2006, 27, 2042–2050. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Liu, Y.; Chen, Y.; Liu, S.; Maitz, M.F.; Wang, X. Immobilization of heparin/poly-l-lysine nanoparticles on dopamine-coated surface to create a heparin density gradient for selective direction of platelet and vascular cells behavior. Acta Biomater. 2014, 10, 1940–1954. [Google Scholar] [CrossRef]
- Ye, L.; Wu, X.; Duan, H.Y.; Geng, X.; Chen, B.; Gu, Y.Q. The in vitro and in vivo biocompatibility evaluation of heparin–poly (ε-caprolactone) conjugate for vascular tissue engineering scaffolds. J. Biomed. Mater. Res. 2012, 100, 3251–3258. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.T.; Pan, X.D.; Zheng, J.; Ma, W.G.; Sun, L.Z. In vitro and in vivo evaluation of a small-caliber coaxial electrospun vascular graft loaded with heparin and VEGF. Int. J. Surg. 2017, 44, 244–249. [Google Scholar] [CrossRef]
- Jeon, O.; Kang, S.W.; Lim, H.W.; Chung, J.H.; Kim, B.S. Long-term and zero-order release of basic fibroblast growth factor from heparin-conjugated poly(L-lactide-co-glycolide) nanospheres and fibrin gel. Biomaterials 2006, 27, 1598–1607. [Google Scholar] [CrossRef]
- Chung, H.J.; Kim, H.K.; Yoon, J.J.; Park, T.G. Heparin immobilized porous PLGA microspheres for angiogenic growth factor delivery. Pharm. Res. 2006, 23, 1835–1841. [Google Scholar] [CrossRef]
- Chung, Y.I.; Tae, G.; Yuk, S.H. A facile method to prepare heparin-functionalized nanoparticles for controlled release of growth factors. Biomaterials 2006, 27, 2621–2626. [Google Scholar] [CrossRef]
- Jeon, O.; Powell, C.; Solorio, L.D.; Krebs, M.D.; Alsberg, E. Affinity-based growth factor delivery using biodegradable, photocrosslinked heparin-alginate hydrogels. J. Control. Release 2011, 154, 258–266. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.H.; Joung, Y.K.; Bae, J.W.; Choi, J.W.; Quyen, T.N.; Park, K.D. Self-assembled nanogel of Pluronic-conjugated heparin as a versatile drug nanocarriers. Macromol. Res. 2011, 19, 180–188. [Google Scholar] [CrossRef]
- Cavalli, R.; Akhter, A.K.; Bisazza, A.; Giustetto, P.; Trotta, F.; Vavia, P. Nanosponge formulations as oxygen delivery systems. Int. J. Pharm. 2010, 402, 254–257. [Google Scholar] [CrossRef] [PubMed]
- Hariri, G. Sequential targeted delivery of paclitaxel and camptothecin using a cross-linked “nanosponge” network for lung cancer chemotherapy. Mol. Pharm. 2014, 11, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Zheng, T.; Li, G.G.; Zhou, F.; Wu, R.; Zhu, J.J.; Wang, H. Gold-nanosponge-based multistimuli-responsive drug vehicles for targeted chemo-photothermal therapy. Adv. Mater. 2016, 28, 8218–8226. [Google Scholar] [CrossRef]
- Ataee-Esfahani, H.; Nemoto, Y.; Wang, L.; Yamauchi, Y. Rational synthesis of Pt spheres with hollow interior and nanosponge shell using silica particles as template. Chem. Commun. 2011, 47, 3885–3887. [Google Scholar] [CrossRef]
- Choi, W.; Sahu, A.; Vilos, C.; Kamaly, N.; Jo, S.M.; Lee, J.H.; Tae, G. Bioinspired Heparin Nanosponge Prepared by Photo-crosslinking for Controlled Release of Growth Factors. Nat. Breifing Sci. Rep. 2017, 7, 14351. [Google Scholar] [CrossRef] [Green Version]
- Choi, W.S.; Joung, Y.S.; Lee, Y.; Bae, J.W.; Park, H.K.; Park, Y.H.; Park, J.C.; Park, K.D. Enhanced Patency and Endothelialization of Small-Caliber Vascular Grafts Fabricated by Coimmobilization of Heparin and Cell-Adhesive Peptides. ACS Appl. Mater. Interfaces 2016, 8, 4336–4346. [Google Scholar] [CrossRef]
- Qian, W.J.; Wan, M.M.; Lin, W.G.; Zhu, J.H. Fabricating a sustained release of heparin using SBA-15 mesoporous silica. J. Mater. Chem. B 2014, 2, 92–101. [Google Scholar] [CrossRef]
- Wan, M.M.; Yang, J.Y.; Qiu, Y.; Zhou, Y.; Guan, C.X.; Hou, Q.; Lin, W.G.; Zhu, J.H. Sustained release of heparin on enlarged pore and functionalized MCM41. ACS Appl. Mater. Interfaces 2012, 4, 4113–4122. [Google Scholar] [CrossRef]
- Zilla, P.; Bezuidenhout, D.; Human, P. Prosthetic vascular grafts: Wrong models, wrong questions and no healing. Biomaterials 2007, 28, 5009–5027. [Google Scholar] [CrossRef]
- Clowes, A.W.; Karnowsky, M.J. Suppression by heparin of smooth-muscle cell-proliferation in injured arteries. Nature 1977, 265, 625–626. [Google Scholar] [CrossRef] [PubMed]
- Hoover, R.L.; Rosenberg, R.; Haering, W.; Karnovsky, M.J. Inhibition of rat arterial smooth muscle cell proliferation by heparin. II. In vitro studies. Circ. Res. 1980, 47, 578–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Uludağ, H. Nanoparticulate systems for growth factor delivery. Pharm. Res. 2009, 26, 1561–1580. [Google Scholar] [CrossRef] [PubMed]
- Tayalia, P.; Mooney, D.J. Controlled growth factor delivery for tissue engineering. Adv. Mater. 2009, 21, 3269–3285. [Google Scholar] [CrossRef] [PubMed]
- Richardson, T.P.; Peters, M.C.; Ennett, A.B.; Mooney, D.J. Polymeric system for dual growth factor delivery. Nat. Biotech. 2001, 19, 1029–1034. [Google Scholar] [CrossRef]
- Anitua, E.; Sánchez, M.; Orive, G.; Andia, I. Delivering growth factors for therapeutics. Trends Pharmacol. Sci. 2008, 29, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Matsuzaki, Y.; Wiet, M.G.; Boe, B.A.; Shinoka, T. The Real Need for Regenerative Medicine in the Future of Congenital Heart Disease Treatment. Biomedicines 2021, 9, 478. [Google Scholar] [CrossRef]
- Agarwal, R.; Blum, K.; Musgrave, A.; Onwuka, E.A.; Reinhardt, J.W.; Best, C.; Breuer, C.K. Degradation and evaluation of polycaprolactone, poly(ε-caprolactone-co-L-lactide), and poly-L-lactic acid as scaffold sealant polymers for murine tissue-engineered vascular grafts. Regen. Med. 2019, 14, 627–637. [Google Scholar] [CrossRef]
- Stowell, C.E.T.; Li, X.; Matsunaga, M.H.; Cockreham, C.B.; Kelly, K.M.; Cheetham, J.; Tzeng, E.; Wang, Y. Resorbable vascular grafts show rapid cellularization and degradation in the ovine carotid. J. Tissue Eng. Regen. Med. 2020, 14, 1673–1684. [Google Scholar] [CrossRef]
- Ran, X.; Ye, Z.; Fu, M.; Wang, Q.; Wu, H.; Lin, S.; Yin, T.; Hu, T.; Wang, G. Design, Preparation, and Performance of a Novel Bilayer Tissue-Engineered Small-Diameter Vascular Graft. Macromol. Biosci. 2019, 19, e1800189. [Google Scholar] [CrossRef] [PubMed]
- Levine, G.N.; Bates, E.R.; Bittl, J.A.; Brindis, R.G.; Fihn, S.D.; Fleisher, L.A.; Granger, C.B.; Lange, R.A.; Mack, M.J.; Smith, S.C.; et al. 2016 ACC/AHA Guideline Focused Update on Duration of Dual Antiplatelet Therapy in Patients With Coronary Artery Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines: An Update of the 2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention, 2011 ACCF/AHA Guideline for Coronary Artery Bypass Graft Surgery, 2012 ACC/AHA/ACP/AATS/PCNA/SCAI/STS Guideline for the Diagnosis and Management of Patients With Stable Ischemic Heart Disease, 2013 ACCF/AHA Guideline for the Management of ST-Elevation Myocardial Infarction, 2014 AHA/ACC Guideline for the Management of Patients With Non-ST-Elevation Acute Coronary Syndromes, and 2014 ACC/AHA Guideline on Perioperative Cardiovascular Evaluation and Management of Patients Undergoing Noncardiac Surgery. Circulation 2016, 13410, e123–e155. [Google Scholar]
- Rosamaria, T.; Chou, T.H.; Eisert, S.N.; Reinhardt, J.; Shah, K.; Matsuzaki, Y.; Zakko, J.; Shinoka, T.; Breuer, C.K.; Stacy, M.R. Non-Invasive Molecular Imaging of Inflammation In Tissue-Engineered Vascular Grafts Using 18f-Fdg Pet/Ct. J. Am. Coll. Cardiol. 2019, 75, 1768. [Google Scholar]
Author | Year | Graft Material | Graft Diameter | Graft Length | Heparin Conjugation Method | Heparin AntithromBotic Testing Methods | Patency Rate in Vivo | Study Model |
---|---|---|---|---|---|---|---|---|
Ye et al., [24] | 2012 | PCL + VEGF | 2 mm | 4 cm | Coaxial electrospinning | ELISA (VEGF), Cell density | 4 weeks–100% | Dog femoral arteries |
Wang et al., [25] | 2013 | P(LLA-CL) +Autologus, EC preendothelialization | 4 mm | 5–6 cm | Coaxial electrospinning | Toluidine blue- 25% in 7days: 90% released in 12 weeks | 24 weeks–88.9% | Canine femoral arteries |
Huang et al., [26] | 2013 | P(LLA-CL) | 4 mm | 5 cm | Coaxial electrospinning | Toluidine blue—50% in 1 days: 72% released in 14 days | 3 months–75% | Canine femoral arteries |
Hu et al., [27] | 2017 | P(LLA-CL) + Collagen + Elastin + VEGF | 4 mm | 1 cm | Coaxial electrospinning | Heparin and VEGF cumulative released in 2 week, LDH assay | 3 weeks–86% | Rabbit infrarenal aorta |
Matsuzaki et al., [28] | 2020 | PCL electrospun + PLCL sponge | 5 mm | 2 cm | Mixing Heparin with sulfated biopolymers | Toluidine blue–90% in 1 days: 99% released in | 8 week–100%. Maximum follow up 1 year | Ovine carotid artery |
2 weeks, LDH assay | ||||||||
Antonova et al., [29] | 2020 | PHBV/PCL-GF mixHep/Ilo | 4 mm | 40mm | Hydrogel-coated by radiation-induced graft polymerization | - | 1day 62.5% 50% in | Ovine carotid artery |
1 year post-operation. | ||||||||
Cheng et al., [23] | 2014 | PLLA | - | 5 mm | Gel Plasma methods | XPS, heparin binding measurements and platelet adhesion quantification. Cell: Primary endothelial cells (ECs), blood outflow endothelial cells (BOECs) derived from endothelial progenitor cells (EPCs) isolated from human peripheral blood, and smooth muscle cells | In vitro study | |
Wang et al., [30] | 2015 | P(LLA-CL) | 14 mm | 10mm | Covalent bonding | Kinetic clotting time method, | In vitro study | |
Cell: Pig iliac endothelial cells | ||||||||
Duan et al., [31] | 2016 | PCL+Collagen+Genipin | - | - | Covalent bonding | APTT, | In vitro study | |
Cell: Endothelial cell, Smooth muscle cell |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsuzaki, Y.; Ulziibayar, A.; Shoji, T.; Shinoka, T. Heparin-Eluting Tissue-Engineered Bioabsorbable Vascular Grafts. Appl. Sci. 2021, 11, 4563. https://doi.org/10.3390/app11104563
Matsuzaki Y, Ulziibayar A, Shoji T, Shinoka T. Heparin-Eluting Tissue-Engineered Bioabsorbable Vascular Grafts. Applied Sciences. 2021; 11(10):4563. https://doi.org/10.3390/app11104563
Chicago/Turabian StyleMatsuzaki, Yuichi, Anudari Ulziibayar, Toshihiro Shoji, and Toshiharu Shinoka. 2021. "Heparin-Eluting Tissue-Engineered Bioabsorbable Vascular Grafts" Applied Sciences 11, no. 10: 4563. https://doi.org/10.3390/app11104563
APA StyleMatsuzaki, Y., Ulziibayar, A., Shoji, T., & Shinoka, T. (2021). Heparin-Eluting Tissue-Engineered Bioabsorbable Vascular Grafts. Applied Sciences, 11(10), 4563. https://doi.org/10.3390/app11104563