The Use of Supercontinuum Laser Sources in Biomedical Diffuse Optics: Unlocking the Power of Multispectral Imaging
Abstract
:1. Introduction
2. History and Basic Principles of Supercontinuum Lasers
3. The Use of Supercontinuum Lasers in Biomedical Diffuse Optics
3.1. Novel Instrument Developement
3.2. Methodology
Publication | Year | System ID | Category of Study | Target of Study | Reported Quantities |
---|---|---|---|---|---|
S. Andersson-Engels et al. [29] | 1993 | 1 | System development | Multispectral tissue characterisation | µa |
af Klinteberg et al. [30] | 1995 | 1 | Optical properties estimation | Breast tissue examination | µa, µ’s |
Bassi et al. [60] | 2004 | 2 | System development | Phantoms and in vivo validation measurements | µa, µ´s |
Abrahamsson et al. [32] | 2004 | 3 | System development | Sample characterisation | µa, µ´s |
Swartling et al. [61] | 2005 | 3 | System development | Phantoms and in vivo validation measurements | µa, µ´s, [HbT], StO2 |
Ramstein et al. [81] | 2005 | 4 | System development | Optical properties in vivo monitoring of songbird brain | µa, µ´s |
D’Andrea et al. [114] | 2006 | 2 | Methodology | Validation of spectral fitting analysis | µa, µ´s, H2O, Water Content Lipid Content, [HbO2], [HHb], [HbT], StO2 |
Bassi et al. [58] | 2006 | 2 | System development | Optical mammography | µa, µ´s, H2O, Lipid Content, [HbT], StO2 |
Bassi et al. [38] | 2007 | 6 | System development | Phantoms and in vivo breast validation | µa, µ´s, H2O, Lipid Content, [HbO2], [HHb], [HbT], StO2 |
Vignal et al. [134] | 2008 | 4 | Application | In vivo measurement of brain hemodynamic changes in songbird | [HbO2], [HHb], [HbT] |
Farina et al. [40] | 2009 | 6 | Methodology | Study and correction of bandpass effects in TD spectroscopy | µa |
Taroni et al. [39] | 2009 | 6 | System development | In vivo measurements of breast tissue | µa, µ´s, Water Content, Lipid Content, Collagen Content, [HbT], StO2 |
Svensson et al. [42] | 2009 | 7 | System development | Validation on phantoms | µa, µ´s |
Valim et al. [85] | 2010 | 8 | Methodology | Study of PDSF in phantoms | Photon density sensitivity function (PDSF) |
Bouchard et al. [101] | 2010 | 9 | Methodology | Characterisation of tissue-mimicking phantoms | n, g, µa, µ´s |
Pifferi et al. [116] | 2010 | 15 | Methodology | Data processing | Δµa |
Taroni et al. [52] | 2010 | 15 | Optical properties estimation | Characterisation of collagen optical properties | µa, µ´s |
Giusto et al. [115] | 2010 | 2 | Methodology | Data Processing | µa, µ´s, [HbO2], [HHb] |
Dalla Mora et al. [78] | 2010 | 6 | Methodology | Electronic development | µa, µ´s |
Mottin et al. [80] | 2011 | 4 | Application | In vivo study of brain oxygen uncoupling/recoupling in songbirds | [HbO2], [HHb] |
Mazurenka et al. [73] | 2011 | 10 | System development | Non-contact TD-NIRS | Contrast |
Arnesano et al. [91] | 2012 | 11 | System development | FD spectroscopy for tissue imaging | µa, µ´s |
Spinelli et al. [97] | 2012 | Multiple systems | Optical properties estimation | Characterisation of liquid phantoms | Intrinsic absorption coefficient, Intrinsic reduced scattering coefficient |
Bargigia et al. [44] | 2012 | 13 | System development | Characterisation on lipids | µa, µ´s |
Gerega et al. [63] | 2012 | 12 | Methodology | TD-NIRS with ICG | Fluorescence of ICG |
Bargigia et al. [43] | 2012 | 15 | System development | Bandwidth up to 1700 nm | µa, µ´s |
Xu et al. [105] | 2012 | Laser not specified | Methodology | Digital phantom | StO2 |
Wang et al. [96] | 2012 | 16 | System development | Liquid optical phantom characterisation in the second and third optical window | g, µa, µ´s |
Selb et al. [67] | 2013 | 14 | System development | Functional brain imaging | Δ[HbO2], Δ[HHb] |
Bargigia et al. [45] | 2013 | 13 | System development | In vivo measurements of forearm and breast | Water Content, Lipid Content, Collagen Content |
Farina et al. [41] | 2013 | 6 | Methodology | Comparison of approaches for spectral selection | µa, µ´s |
Mazurenka et al. [75] | 2013 | 26 | System development | Non-contact system | Δ[HbO2], Δ[HHb] |
Wabnitz et al. [135] | 2013 | Multiple instruments | Methodology | multi-laboratory study to assess the performance of time-domain optical brain imagers | µa, µ´s |
Quarto et al. [95] | 2013 | 15 | Methodology | Phantom characterisation | µa, µ´s |
Aernouts et al. [98] | 2013 | 16 | Optical properties estimation | Phantom characterisation | g, µa, µ´s |
Quarto et al. [133] | 2013 | 15 | Methodology | In vivo optical diagnostics of lung conditions and diseases | µa, µ´s |
Aernouts et al. [99] | 2014 | 16 | Optical properties estimation | Phantom characterisation | g, µa, µ´s |
Spinelli et al. [100] | 2014 | 6 | Optical properties estimation | Phantom characterisation | µa, µ´s |
Cooper et al. [28] | 2014 | 17 | System development | Brain TD-DOT | µa, µ´s |
Farina et al. [126] | 2014 | Multiple instruments | Optical properties estimation | Brain Tissue characterisation | µa, µ´s |
Wabnitz et al. [93] | 2014 | 17 | Methodology | Instrumental performance protocol | Instrument parameters |
Wabnitz et al. [94] | 2014 | 17 | Methodology | Instrumental performance protocol | Instrument parameters, µa |
Martelli et al. [102] | 2014 | 18 | Methodology | Phantom characterization | µa, µ´s |
Taroni et al. [55] | 2015 | 6 | Optical properties estimation | In vivo quantification of collagen in breast tissue | Water Content, Lipid Content, Collagen Content, Collagen index, [HbT], StO2 |
Lange et al. [70] | 2015 | 19 | System development | Functional brain monitoring | Δ[HbO2], Δ[HHb], Δ[oxCCO] |
Farina et al. [83] | 2015 | 20 | System development | TD-DOT/FMT | Fluorescence |
Contini et al. [79] | 2015 | 21 | Methodology | Time-gated measurements on tissue phantoms | Contrast |
Della Mora et al. [109] | 2015 | 22 | Methodology | Testing of a SiPM | µa, µ´s |
Pifferi et al. [103] | 2015 | 15 | Methodology | Phantom characterisation | µa, µ´s |
Martinenghi et al. [110] | 2015 | 15 | Methodology | Characterisation of SiPM detectors | Instrument parameters |
Dempsey et al. [88] | 2015 | 17 | Methodology | Whole-head TD-DOT in neonates | µa, µ´s |
Sordillo et al. [127] | 2015 | 23 | Methodology | Deep-tissue, optical properties monitoring | µt |
Konugolu Venkata Sekar et al. [47] | 2015 | 24 | Optical properties estimation | In vivo measurement of optical properties of bone | µa, µ´s, Water Content, Lipid Content, Collagen Content, [HbO2], [HHb], [HbT], StO2 |
Konugolu Venkata Sekar et al. [23] | 2016 | 24 | Optical properties estimation | In vivo human tissues measurements | µa, µ´s, H2O, Lipid, Collagen, [HbO2], [HHb], [HbT], StO2 |
Di Sieno et al. [76] | 2016 | 25 | System development | Validation on phantoms | Instrument parameters |
Wabnitz et al. [104] | 2016 | 26 | Optical properties estimation | Phantoms characterisation | µa, µ´s |
Konugolu Venkata Sekar et al. [49] | 2016 | 24 | Optical properties estimation | In vivo measurement of optical properties of bone | µa, µ´s, Water Content, Lipid Content, Collagen Content, [HbO2], [HHb], StO2 |
Konugolu Venkata Sekar et al. [48] | 2016 | 24 | Optical properties estimation | In vivo measurement of optical properties of bone | µa, µ´s, Water Content, Lipid Content, Collagen Content, [HbO2], [HHb], [HbT], StO2 |
Martinenghi et al. [111] | 2016 | 13 | Methodology | Characterisation of SiPM detectors | Instrument parameters |
Di Sieno et al. [87] | 2016 | 27 | System development | In vivo assessment of flap viability | [HbO2], [HHb] |
Zouaoui et al. [86] | 2017 | 22 | Methodology | Validation of chromophore decomposition algorithm | Dyes content |
Konugolu Venkata Sekar et al. [46] | 2017 | 24 | Optical properties estimation | In vivo measurement of optical properties of collagen | µa Collagen |
Wabnitz et al.[74] | 2017 | 27 | Methodology | Non-contact TD brain imaging | Intensity Contrast |
Di Sieno et al. [112] | 2017 | 24 | Methodology | Characterisation of bioresorbable fibres | µa, µ´s |
Konugolu Venkata Sekar et al. [53] | 2017 | 24 | Optical properties estimation | In vivo measurement of optical properties of elastin | µa and µ´s Elastin |
Jiang et al. [90] | 2017 | 39 | Methodology | Data Processing—GPU | µa, µ´s |
Konugolu Venkata Sekar et al. [50] | 2018 | 24 | Optical properties estimation | In vivo chromophore characterisation of thyroid | µa, µ´s |
Lange et al. [69] | 2018 | 19 | System development | In vivo monitoring of brain physiological changes in humans | Δ[HbO2], Δ[HHb] |
Pian et al. [84] | 2018 | 29 | System development | Validation on phantoms | µa |
Gerega et al. [62] | 2018 | 30 | Application | assessment of intracerebral and extracerebral absorption changes | Δ[ICG] |
He et al. [65] | 2018 | 31 | Application | continuous monitoring of absolute cerebral blood flow (CBF) in adult human patients | CBF |
Della Mora et al. [113] | 2018 | 15 | Methodology | bioresorbable optical fibers | Contrast, µa, µ´s |
Laura Dempsey [89] | 2018 | 17 | System development | Brain TD-DOT | [HbO2], [HHb] |
Liu et al. [131] | 2018 | 28 | Methodology | Glucose monitoring | [Glucose] |
Wabnitz et al. [106] | 2019 | 32 | Methodology | Validation of digital phantom | Phantom parameters and basic responses of the instrument to it |
Fuglerud et al. [132] | 2019 | 33 | Methodology | Glucose sensing in blood | [Glucose] |
Torabzadeh et al. [82] | 2019 | 34 | System development | Spatial FD HIS on ex vivo beef sample | µa, µ´s, Water Content, lipid Content, [HbO2], [HHb], [MHb] |
Lange et al. [24] | 2019 | 35 | System development | Validation on phantoms | µa, µ´s, [HbO2], [HHb], [oxCCO] |
Ferocino et al. [54] | 2019 | 24 | Methodology | Validation on phantoms of TD-NIRs reconstruction algorithm | µa, µ´s |
Lange et al. [72] | 2019 | 35 | Application | Reproducibility analysis of cerebral oxygenation measured with TD-NIRS | [HbO2], [HHb], StO2 |
Yang et al. [118] | 2019 | 36 | Methodology | Validation on phantoms of a multivariate TD-SD algorithm | µa, µ´s |
Yang et al. [117] | 2019 | 36 | Methodology | Validation on phantoms of a multivariate TD-SD algorithm | µa, µ´s |
Ferocino et al. [136] | 2019 | 24 | Methodology | Validation on meat samples of TD-NIRs reconstruction algorithm | [HbO2] |
Wojtkiewicz et al. [120] | 2019 | 30 | Methodology | Validation on phantoms and in vivo of a self-calibrating TD algorithm | µa, µ´s, [HbO2], [HHb] |
Sudakou et al. [64] | 2019 | 30 | System development | Multi wavelength TD-NIRS system for brain monitoring | [HbO2], [HHb], [HbT] |
Wabnitz et al. [122] | 2020 | 17 | Methodology | Depth-selective analysis in TD optical brain imaging | µa, µ´s |
Lanka et al. [51] | 2020 | 24 | Optical properties estimation | In vivo measurement of optical properties of adipose tissue | µa, µ´s, Water Content, Lipid Content, Collagen Content, [HbO2], [HHb], [HbT], StO2 |
Sudakou et al. [123] | 2020 | 37 | Methodology | Performance of measurands in TD optical brain imaging | µa, µ´s |
Yang et al. [119] | 2020 | 32 | Methodology | Space-enhanced TD diffuse optics in two-layered structures | µa, µ´s |
Lanka et al. [56] | 2020 | 24 | Methodology | Monitoring of thermal treatment in biological tissues | µa, µ´s |
Amendola et al. [108] | 2020 | 24 | Methodology | Effect of the 3d printed material on raw data | Photon Counts |
Jiang et al. [26] | 2020 | 39 | System development | Novel TD-NIRS system based on SPAD camera | µa, µ´s |
Jiang et al. [27] | 2020 | 39 | Methodology | Image reconstruction for TD-NIRS system based on SPAD system | µa |
Kovacsova et al. [121] | 2021 | 35 | Methodology | Validation of broadband oximetry algorithm | µa, µ´s, StO2 |
Giannoni et al. [25] | 2021 | 38 | System development | HSI of in vivo hemoglobin and CCO in the exposed cortex of mice | Δ[HbO2], Δ[HHb], Δ[oxCCO] |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Elwell, C.E.; Cooper, C.E. Making light work: Illuminating the future of biomedical optics. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 4358–4379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maniewsk, R.; Liebert, A.; Kacprzak, M.; Zbieć, A. Selected applications of near infrared optical methods in medical diagnosis. OptoElectron. Rev. 2004, 12, 255–262. [Google Scholar]
- Martelli, F.; Binzoni, T.; Pifferi, A.; Spinelli, L.; Farina, A.; Torricelli, A. There’s plenty of light at the bottom: Statistics of photon penetration depth in random media. Sci. Rep. 2016, 6, 27057. [Google Scholar] [CrossRef] [PubMed]
- Wolf, M.; Ferrari, M.; Quaresima, V. Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications. J. Biomed. Opt. 2007, 12, 62104. [Google Scholar]
- Scholkmann, F.; Kleiser, S.; Metz, A.J.; Zimmermann, R.; Mata Pavia, J.; Wolf, U.; Wolf, M. A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. Neuroimage 2014, 85, 6–27. [Google Scholar] [CrossRef] [PubMed]
- Yeganeh, H.Z.; Toronov, V.; Elliott, J.T.; Diop, M.; Lee, T.-Y.; St Lawrence, K. Broadband continuous-wave technique to measure baseline values and changes in the tissue chromophore concentrations. Biomed. Opt. Express 2012, 3, 2761–2770. [Google Scholar] [CrossRef] [PubMed]
- Bale, G.; Elwell, C.E.; Tachtsidis, I. From Jöbsis to the present day: A review of clinical near-infrared spectroscopy measurements of cerebral cytochrome-c-oxidase. J. Biomed. Opt. 2016, 21, 091307. [Google Scholar] [CrossRef]
- Yamada, Y.; Suzuki, H.; Yamashita, Y. Time-Domain Near-Infrared Spectroscopy and Imaging: A Review. Appl. Sci. 2019, 9, 1127. [Google Scholar] [CrossRef] [Green Version]
- Grosenick, D.; Wabnitz, H.; Macdonald, R. Diffuse near-infrared imaging of tissue with picosecond time resolution. Biomed. Eng. Biomed. Tech. 2018, 63, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Torricelli, A.; Contini, D.; Pifferi, A.; Caffini, M.; Re, R.; Zucchelli, L.; Spinelli, L. Time domain functional NIRS imaging for human brain mapping. Neuroimage 2014, 85, 28–50. [Google Scholar] [CrossRef] [Green Version]
- Konugolu Venkata Sekar, S.; Lanka, P.; Farina, A.; Dalla Mora, A.; Andersson-Engels, S.; Taroni, P.; Pifferi, A. Broadband Time Domain Diffuse Optical Reflectance Spectroscopy: A Review of Systems, Methods, and Applications. Appl. Sci. 2019, 9, 5465. [Google Scholar] [CrossRef] [Green Version]
- Hoshi, Y.; Yamada, Y. Overview of diffuse optical tomography and its clinical applications. J. Biomed. Opt. 2016, 21, 091312. [Google Scholar] [CrossRef] [Green Version]
- Durduran, T.; Choe, R.; Baker, W.B.; Yodh, A.G. Diffuse optics for tissue monitoring and tomography. Rep. Prog. Phys. 2010, 73, 076701. [Google Scholar] [CrossRef] [Green Version]
- Labruyère, A.; Tonello, A.; Couderc, V.; Huss, G.; Leproux, P. Compact supercontinuum sources and their biomedical applications. Opt. Fiber Technol. 2012, 18, 375–378. [Google Scholar] [CrossRef]
- Alfano, R.R.; Shapiro, S.L. Emission in the Region 4000 to 7000 A Via Four-Photon Coupling in Glass. Phys. Rev. Lett. 1970, 24, 584–587. [Google Scholar] [CrossRef]
- Alfano, R.R.; Shapiro, S.L. Observation of Self-Phase Modulation and Small-Scale Filaments in Crystals and Glasses. Phys. Rev. Lett. 1970, 24, 592–594. [Google Scholar] [CrossRef]
- Granzow, N. Supercontinuum white light lasers: A review on technology and applications. In Proceedings of the Joint TC1—TC2 International Symposium on Photonics and Education in Measurement Science, Jena, Germany, 17–19 September 2019; Volume 11144, p. 1114408. [Google Scholar]
- Bloembergen, N. Nonlinear optics: Past, present, and future. IEEE J. Sel. Top. Quantum Electron. 2000, 6, 876–880. [Google Scholar] [CrossRef]
- Agrawal, G.P. Nonlinear fiber optics: Its history and recent progress [Invited]. J. Opt. Soc. Am. B 2011, 28, A1–A10. [Google Scholar] [CrossRef]
- Knight, J.C.; Birks, T.A.; Russell, P.S.J.; Atkin, D.M. All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 1996, 21, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Tu, H.; Boppart, S.A. Coherent fiber supercontinuum for biophotonics. Laser Photonics Rev. 2013, 7, 628–645. [Google Scholar] [CrossRef] [Green Version]
- Pifferi, A.; Contini, D.; Mora, A.D.; Farina, A.; Spinelli, L.; Torricelli, A. New frontiers in time-domain diffuse optics, a review. J. Biomed. Opt. 2016, 21, 091310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konugolu Venkata Sekar, S.; Dalla Mora, A.; Bargigia, I.; Martinenghi, E.; Lindner, C.; Farzam, P.; Pagliazzi, M.; Durduran, T.; Taroni, P.; Pifferi, A.; et al. Broadband (600–1350 nm) Time-Resolved Diffuse Optical Spectrometer for Clinical Use. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 406–414. [Google Scholar] [CrossRef]
- Lange, F.; Dunne, L.; Hale, L.; Tachtsidis, I. MAESTROS: A Multiwavelength Time-Domain NIRS System to Monitor Changes in Oxygenation and Oxidation State of Cytochrome-C-Oxidase. IEEE J. Sel. Top. Quantum Electron. 2018, 25. [Google Scholar] [CrossRef] [PubMed]
- Giannoni, L.; Lange, F.; Sajic, M.; Smith, K.J.; Tachtsidis, I. A hyperspectral imaging system for mapping haemoglobin and cytochrome-c-oxidase concentration changes in the exposed cerebral cortex. IEEE J. Sel. Top. Quantum Electron. 2021, 27. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Mata, A.D.C.; Lindner, S.; Charbon, E.; Wolf, M.; Kalyanov, A. Dynamic time domain near-infrared optical tomography based on a SPAD camera. Biomed. Opt. Express 2020, 11, 5470. [Google Scholar] [CrossRef]
- Jiang, J.; Mata, A.D.C.; Lindner, S.; Zhang, C.; Charbon, E.; Wolf, M.; Kalyanov, A. Image reconstruction for novel time domain near infrared optical tomography: Towards clinical applications. Biomed. Opt. Express 2020, 11, 4723. [Google Scholar] [CrossRef] [PubMed]
- Cooper, R.J.; Magee, E.; Everdell, N.; Magazov, S.; Varela, M.; Airantzis, D.; Gibson, A.P.; Hebden, J.C. MONSTIR II: A 32-channel, multispectral, time-resolved optical tomography system for neonatal brain imaging. Rev. Sci. Instrum. 2014, 85. [Google Scholar] [CrossRef] [PubMed]
- Andersson-Engels, S.; Berg, R.; Persson, A.; Svanberg, S. Multispectral tissue characterization with time-resolved detection of diffusely scattered white light. Opt. Lett. 1993, 18, 1697. [Google Scholar] [CrossRef]
- af Klinteberg, C.; Berg, R.; Lindquist, C.; Andersson-Engels, S.; Svanberg, S. Diffusely scattered femtosecond white-light examination of breast tissue in vitro and in vivo. Photon Propag. Tissues 1995, 2626, 149–157. [Google Scholar]
- Jarlman, O.; Berg, R.; Andersson-Engels, S.; Svanberg, S.; Pettersson, H. Time-resolved white light transillumination for optical imaging. Acta Radiol. 1997, 38, 185–189. [Google Scholar] [CrossRef]
- Abrahamsson, C.; Svensson, T.; Svanberg, S.; Andersson-Engels, S.; Johansson, J.; Folestad, S. Time and wavelength resolved spectroscopy of turbid media using light continuum generated in a crystal fiber. Opt. Express 2004, 12, 4103–4112. [Google Scholar] [CrossRef] [Green Version]
- Pifferi, A.; Torricelli, A.; Taroni, P.; Comelli, D.; Bassi, A.; Cubeddu, R. Fully automated time domain spectrometer for the absorption and scattering characterization of diffusive media. Rev. Sci. Instrum. 2007, 78, 053103. [Google Scholar] [CrossRef] [PubMed]
- Taroni, P.; Pifferi, A.; Torricelli, A.; Comelli, D.; Cubeddu, R. In vivo absorption and scattering spectroscopy of biological tissues. Photochem. Photobiol. Sci. 2003, 2, 124–129. [Google Scholar] [CrossRef]
- Pifferi, A.; Torricelli, A.; Taroni, P.; Bassi, A.; Chikoidze, E.; Giambattistelli, E.; Cubeddu, R. Optical biopsy of bone tissue: A step toward the diagnosis of bone pathologies. J. Biomed. Opt. 2004, 9, 474. [Google Scholar] [CrossRef] [PubMed]
- Cubeddu, R.; Pifferi, A.; Taroni, P.; Torricelli, A.; Valentini, G. Noninvasive absorption and scattering spectroscopy of bulk diffusive media: An application to the optical characterization of human breast. Appl. Phys. Lett. 1999, 74, 874–876. [Google Scholar] [CrossRef]
- Taroni, P.; Pifferi, A.; Cubeddu, R.; Torricelli, A.; Comelli, D. Absorption of collagen: Effects on the estimate of breast composition and related diagnostic implications. J. Biomed. Opt. 2007, 12, 014021. [Google Scholar] [CrossRef]
- Bassi, A.; Farina, A.; D’Andrea, C.; Pifferi, A.; Valentini, G.; Cubeddu, R. Portable, large-bandwidth time-resolved system for diffuse optical spectroscopy. Opt. Express 2007, 15, 14482. [Google Scholar] [CrossRef]
- Taroni, P.; Bassi, A.; Comelli, D.; Farina, A.; Cubeddu, R.; Pifferi, A. Diffuse optical spectroscopy of breast tissue extended to 1100 nm. J. Biomed. Opt. 2009, 14, 054030. [Google Scholar] [CrossRef] [PubMed]
- Farina, A.; Bassi, A.; Pifferi, A.; Taroni, P.; Comelli, D.; Spinelli, L.; Cubeddu, R. Bandpass Effects in Time-Resolved Diffuse Spectroscopy. Appl. Spectrosc. 2009, 63, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Farina, A.; Bargigia, I.; Taroni, P.; Pifferi, A. Note: Comparison between a prism-based and an acousto-optic tunable filter-based spectrometer for diffusive media. Rev. Sci. Instrum. 2013, 84. [Google Scholar] [CrossRef]
- Svensson, T.; Alerstam, E.; Khoptyar, D.; Johansson, J.; Folestad, S.; Andersson-Engels, S. Near-infrared photon time-of-flight spectroscopy of turbid materials up to 1400 nm. Rev. Sci. Instrum. 2009, 80, 45–48. [Google Scholar] [CrossRef] [Green Version]
- Bargigia, I.; Tosi, A.; Farina, A.; Bassi, A.; Taroni, P.; Bahgat Shehata, A.; Della Frera, A.; Dalla Mora, A.; Zappa, F.; Cubeddu, R.; et al. Optical Spectroscopy up to 1700 nm: A Time-Resolved Approach Combined with an InGaAs/InP Single-Photon Avalanche Diode. In Proceedings of the Biomedical Optics and 3-D Imaging 2012, Miami, FL, USA, 28 April–2 May 2012; p. JM3A.16. [Google Scholar]
- Bargigia, I.; Tosi, A.; Bahgat Shehata, A.; Della Frera, A.; Farina, A.; Bassi, A.; Taroni, P.; Dalla Mora, A.; Zappa, F.; Cubeddu, R.; et al. Time-resolved diffuse optical spectroscopy up to 1700 nm by means of a time-gated InGaAs/InP single-photon avalanche diode. Appl. Spectrosc. 2012, 66, 944–950. [Google Scholar] [CrossRef]
- Bargigia, I.; Tosi, A.; Bahgat Shehata, A.; Della Frera, A.; Farina, A.; Bassi, A.; Taroni, P.; Dalla Mora, A.; Zappa, F.; Cubeddu, R.; et al. In-vivo optical spectroscopy in the time-domain beyond 1100 nm. In Proceedings of the Optics InfoBase Conference Papers, Munich, Germany, 12–16 May 2013; Taroni, P., Dehghani, H., Eds.; Optical Society of America: Washington, DC, USA, 2013; p. 879902. [Google Scholar]
- Sekar, S.K.V.; Bargigia, I.; Mora, A.D.; Taroni, P.; Ruggeri, A.; Tosi, A.; Pifferi, A.; Farina, A. Diffuse optical characterization of collagen absorption from 500 to 1700 nm. J. Biomed. Opt. 2017, 22, 015006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konugolu Venkata Sekar, S.; Farina, A.; Martinenghi, E.; Dalla Mora, A.; Taroni, P.; Pifferi, A.; Negredo, E.; Puig, J.; Escrig, R.; Rosales, Q.; et al. Time-resolved diffused optical characterization of key tissue constituents of human bony prominence locations. In Proceedings of the European Conference on Biomedical Optics, Munich, Germany, 21–25 June 2015; Volume 9538, pp. 95380X–95380X–5. [Google Scholar]
- Konugolu Venkata Sekar, S.; Pagliazzi, M.; Negredo, E.; Martelli, F.; Farina, A.; Dalla Mora, A.; Lindner, C.; Farzam, P.; Pérez-Álvarez, N.; Puig, J.; et al. In Vivo, non-invasive characterization of human bone by hybrid broadband (600–1200 nm) diffuse optical and correlation spectroscopies. PLoS ONE 2016, 11, e0168426. [Google Scholar] [CrossRef] [Green Version]
- Sekar, S.K.V.; Mora, A.D.; Martinenghi, E.; Taroni, P.; Pifferi, A.; Farina, A.; Puig, J.; Negredo, E.; Lindner, C.; Pagliazzi, M.; et al. In vivo Time domain Broadband (600–1200 nm) Diffuse Optical Characterization of Human Bone. In Proceedings of the Optical Tomography and Spectroscopy 2016, Fort Lauderdale, FL, USA, 25–28 April 2016; p. JTu3A.32. [Google Scholar]
- Konugolu Venkata Sekar, S.; Farina, A.; Dalla Mora, A.; Lindner, C.; Pagliazzi, M.; Mora, M.; Aranda, G.; Dehghani, H.; Durduran, T.; Taroni, P.; et al. Broadband (550–1350 nm) diffuse optical characterization of thyroid chromophores. Sci. Rep. 2018, 8, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Lanka, P.; Segala, A.; Farina, A.; Konugolu Venkata Sekar, S.; Nisoli, E.; Valerio, A.; Taroni, P.; Cubeddu, R.; Pifferi, A. Non-invasive investigation of adipose tissue by time domain diffuse optical spectroscopy. Biomed. Opt. Express 2020, 11, 2779. [Google Scholar] [CrossRef] [PubMed]
- Taroni, P.; Bassi, A.; Farina, A.; Cubeddu, R.; Pifferi, A. Role of Collagen Scattering for in vivo Tissue Characterization. In Proceedings of the Biomedical Optics 2010, Miami, FL, USA, 11–14 April 2010; p. BTuD107. [Google Scholar]
- Konugolu Venkata Sekar, S.; Beh, J.S.; Farina, A.; Dalla Mora, A.; Pifferi, A.; Taroni, P. Broadband diffuse optical characterization of elastin for biomedical applications. Biophys. Chem. 2017, 229, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Ferocino, E.; Di Sciacca, G.; Di Sieno, L.; Dalla Mora, A.; Pifferi, A.; Arridge, S.R.; Martelli, F.; Taroni, P.; Farina, A. Multi-wavelength time domain diffuse optical tomography for breast cancer: Initial results on silicone phantoms. In Proceedings of the SPIE BiOS, San Francisco, CA, USA, 2–7 February 2019; p. 59. [Google Scholar]
- Taroni, P.; Pifferi, A.; Quarto, G.; Farina, A.; Ieva, F.; Paganoni, A.M.; Abbate, F.; Cassano, E.; Cubeddu, R. Time domain diffuse optical spectroscopy: In vivo quantification of collagen in breast tissue. In Proceedings of the Optical Methods for Inspection, Characterization, and Imaging of Biomaterials II, Munich, Germany, 21–25 June 2015; Volume 9529, p. 952910. [Google Scholar]
- Lanka, P.; Joseph, F.K.; Kruit, H.; Konugolu, S.; Sekar, V.; Farina, A.; Cubeddu, R.; Manohar, S.; Pifferi, A. Time domain diffuse optical spectroscopy for the monitoring of thermal treatment in biological tissue. In Proceedings of the Optical Tomography and Spectroscopy 2020, Washington, DC, USA, 20–23 April 2020; pp. 1–2. [Google Scholar]
- Kalloor Joseph, F.; Lanka, P.; Kruit, H.; Konugolu Venkata Sekar, S.; Farina, A.; Cubeddu, R.; Manohar, S.; Pifferi, A. Key features in the optical properties of tissue during and after radiofrequency ablation. In Proceedings of the SPIE BiOS, San Francisco, CA, USA, 1–6 February 2020; p. 16. [Google Scholar]
- Bassi, A.; Spinelli, L.; D’Andrea, C.; Giusto, A.; Swartling, J.; Pifferi, A.; Torricelli, A.; Cubeddu, R. Feasibility of white-light time-resolved optical mammography. J. Biomed. Opt. 2006, 11, 054035. [Google Scholar] [CrossRef]
- Ferrari, M.; Mottola, L.; Quaresima, V. Principles, techniques, and limitations of near infrared spectroscopy. Can. J. Appl. Physiol. 2004, 29, 463–487. [Google Scholar] [CrossRef] [Green Version]
- Bassi, A.; Swartling, J.; D’Andrea, C.; Pifferi, A.; Torricelli, A.; Cubeddu, R. Time-resolved spectrophotometer for turbid media based on supercontinuum generation in a photonic crystal fiber. Opt. Lett. 2004, 29, 2405. [Google Scholar] [CrossRef]
- Swartling, J.; Bassi, A.; D’Andrea, C.; Pifferi, A.; Torricelli, A.; Cubeddu, R. Dynamic time-resolved diffuse spectroscopy based on supercontinuum light pulses. Appl. Opt. 2005, 44, 4684. [Google Scholar] [CrossRef] [PubMed]
- Gerega, A.; Milej, D.; Weigl, W.; Kacprzak, M.; Liebert, A. Multiwavelength time-resolved near-infrared spectroscopy of the adult head: Assessment of intracerebral and extracerebral absorption changes. Biomed. Opt. Express 2018, 9, 2974. [Google Scholar] [CrossRef]
- Gerega, A.; Milej, D.; Weigl, W.; Zolek, N.; Sawosz, P.; Maniewski, R.; Liebert, A. Multi-wavelength time-resolved measurements of diffuse reflectance: Phantom study with dynamic inflow of ICG. In Proceedings of the Biomedical Optics 2012, Miami, FL, USA, 28 April–2 May 2012; p. JM3A.31. [Google Scholar]
- Sudakou, A.; Lange, F.; Isler, H.; Gerega, A.; Ostojic, D.; Sawosz, P.; Tachtsidis, I.; Wolf, M.; Liebert, A. Multi-wavelength time-resolved NIRS measurements for estimation of absolute concentration of chromophores: Blood phantom study. In Proceedings of the Diffuse Optical Spectroscopy and Imaging VII, Munich, Germany, 23–25 June 2019; Dehghani, H., Wabnitz, H., Eds.; SPIE: Washington, DC, USA, 2019; Volume 1107422, p. 72. [Google Scholar]
- He, L.; Baker, W.B.; Busch, D.R.; Jiang, J.Y.; Lawrence, K.S.; Kofke, W.A.; Yodh, A.G.; He, L.; Baker, W.B.; Milej, D.; et al. Noninvasive continuous optical monitoring of absolute cerebral blood flow in critically ill adults. Neurophotonics 2018, 5, 1. [Google Scholar]
- Durduran, T.; Yodh, A.G. Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement. Neuroimage 2014, 85, 5163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selb, J.; Zimmermann, B.B.; Martino, M.; Ogden, T.; Boas, D.A. Functional brain imaging with a supercontinuum time-domain NIRS system. In Proceedings of the Optical Tomography and Spectroscopy of Tissue X, San Francisco, CA, USA, 5–7 February 2013; Volume 8578, p. 857807. [Google Scholar]
- Selb, J.; Joseph, D.K.; Boas, D. Time-gated optical system for depth-resolved functional brain imaging. J. Biomed. Opt. 2006, 11, 44008. [Google Scholar] [CrossRef]
- Lange, F.; Peyrin, F.; Montcel, B. Broadband time-resolved multi-channel functional near-infrared spectroscopy system to monitor in vivo physiological changes of human brain activity. Appl. Opt. 2018, 57, 6417. [Google Scholar] [CrossRef]
- Lange, F.; Peyrin, F.; Montcel, B. A hyperspectral time resolved DOT system to monitor physiological changes of the human brain activity. In Proceedings of the Advanced Microscopy Techniques IV and Neurophotonics II, Munich, Germany, 21–25 June 2015; OSA: Washington, DC, USA, 2015; p. 95360R. [Google Scholar]
- Lange, F.; Dunne, L.; Tachtsidis, I. Evaluation of Haemoglobin and Cytochrome Responses During Forearm Ischaemia Using Multi-wavelength Time Domain NIRS. In Oxygen Transport to Tissue XXXIX; Advances in Experimental Medicine and Biology; Halpern, H.J., LaManna, J.C., Harrison, D.K., Epel, B., Eds.; Springer International Publishing: Cham, Switzerland, 2017; Volume 977, pp. 67–72. ISBN 978-3-319-55229-3. [Google Scholar]
- Lange, F.; Tachtsidis, I. Short and mid-term reproducibility analysis of cerebral tissue saturation measured by time domain-NIRS. In Proceedings of the European Conference on Biomedical Optics, Munich, Germany, 23–25 June 2019; Volume 11074. [Google Scholar]
- Mazurenka, M.; Jelzow, A.; Wabnitz, H.; Contini, D.; Spinelli, L.; Pifferi, A.; Cubeddu, R.; Mora, A.D.; Tosi, A.; Zappa, F.; et al. Non-contact time-resolved diffuse reflectance imaging at null source-detector separation. Opt. Express 2011, 20, 283. [Google Scholar] [CrossRef]
- Wabnitz, H.; Mazurenka, M.; Di Sieno, L.; Contini, D.; Dalla Mora, A.; Farina, A.; Hoshi, Y.; Kirilina, E.; Macdonald, R.; Pifferi, A. Non-contact time-domain imaging of functional brain activation and heterogeneity of superficial signals. In Proceedings of the Diffuse Optical Spectroscopy and Imaging VI, Munich, Germany, 25–29 June 2017; Dehghani, H., Wabnitz, H., Eds.; SPIE: Washington, DC, USA, 2017; Volume 10412, p. 104120J. [Google Scholar]
- Mazurenka, M.; Di Sieno, L.; Boso, G.; Contini, D.; Pifferi, A.; Mora, A.D.; Tosi, A.; Wabnitz, H.; Macdonald, R. Non-contact in vivo diffuse optical imaging using a time-gated scanning system. Biomed. Opt. Express 2013, 4, 2257. [Google Scholar] [CrossRef]
- Di Sieno, L.; Wabnitz, H.; Pifferi, A.; Mazurenka, M.; Hoshi, Y.; Dalla Mora, A.; Contini, D.; Boso, G.; Becker, W.; Martelli, F.; et al. Characterization of a time-resolved non-contact scanning diffuse optical imaging system exploiting fast-gated single-photon avalanche diode detection. Rev. Sci. Instrum. 2016, 87. [Google Scholar] [CrossRef] [Green Version]
- Torricelli, A.; Pifferi, A.; Spinelli, L.; Cubeddu, R.; Martelli, F.; Del Bianco, S.; Zaccanti, G. Time-Resolved Reflectance at Null Source-Detector Separation: Improving Contrast and Resolution in Diffuse Optical Imaging. Phys. Rev. Lett. 2005, 95, 078101. [Google Scholar] [CrossRef]
- Dalla Mora, A.; Tosi, A.; Zappa, F.; Cova, S.; Contini, D.; Pifferi, A.; Spinelli, L.; Torricelli, A.; Cubeddu, R. Fast-Gated Single-Photon Avalanche Diode for Wide Dynamic Range Near Infrared Spectroscopy. IEEE J. Sel. Top. Quantum Electron. 2010, 16, 1023–1030. [Google Scholar] [CrossRef]
- Contini, D.; Dalla Mora, A.; Spinelli, L.; Farina, A.; Torricelli, A.; Cubeddu, R.; Martelli, F.; Zaccanti, G.; Tosi, A.; Boso, G.; et al. Effects of time-gated detection in diffuse optical imaging at short source-detector separation. J. Phys. D Appl. Phys. 2015, 48, 045401. [Google Scholar] [CrossRef] [Green Version]
- Mottin, S.; Montcel, B.; de Chatellus, H.G.; Ramstein, S.; Vignal, C.; Mathevon, N. Functional White-Laser Imaging to Study Brain Oxygen Uncoupling/Recoupling in Songbirds. J. Cereb. Blood Flow Metab. 2011, 31, 393–400. [Google Scholar] [CrossRef] [Green Version]
- Ramstein, S.; Vignal, C.; Mathevon, N.; Mottin, S. In vivo and noninvasive measurement of a songbird head’s optical properties. Appl. Opt. 2005, 44, 6197. [Google Scholar] [CrossRef] [Green Version]
- Torabzadeh, M.; Stockton, P.; Kennedy, G.T.; Saager, R.B.; Durkin, A.J.; Bartels, R.A.; Tromberg, B.J. Hyperspectral imaging in the spatial frequency domain with a supercontinuum source. J. Biomed. Opt. 2019, 24, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farina, A.; Lepore, M.; Di Sieno, L.; Dalla Mora, A.; Ducros, N.; Pifferi, A.; Valentini, G.; Arridge, S.; D’Andrea, C. Diffuse optical tomography by using time-resolved single pixel camera. In Proceedings of the SPIE BiOS, San Francisco, CA, USA, 7–12 February 2015; Tromberg, B.J., Yodh, A.G., Sevick-Muraca, E.M., Alfano, R.R., Eds.; International Society for Optics and Photonics: Bellingham, WA, USA, 2015; p. 93191K. [Google Scholar]
- Pian, Q.; Yao, R.; Intes, X. Hyperspectral wide-field time domain single-pixel diffuse optical tomography platform. Biomed. Opt. Express 2018, 9, 6258. [Google Scholar] [CrossRef]
- Valim, N.; Brock, J.; Niedre, M. Experimental measurement of time-dependent photon scatter for diffuse optical tomography. J. Biomed. Opt. 2010, 15, 065006. [Google Scholar] [CrossRef] [Green Version]
- Zouaoui, J.; Di Sieno, L.; Hervé, L.; Pifferi, A.; Farina, A.; Mora, A.D.; Derouard, J.; Dinten, J.-M. Chromophore decomposition in multispectral time-resolved diffuse optical tomography. Biomed. Opt. Express 2017, 8, 4772. [Google Scholar] [CrossRef] [Green Version]
- Di Sieno, L.; Bettega, G.; Berger, M.; Hamou, C.; Aribert, M.; Mora, A.D.; Puszka, A.; Grateau, H.; Contini, D.; Hervé, L.; et al. Toward noninvasive assessment of flap viability with time-resolved diffuse optical tomography: A preclinical test on rats. J. Biomed. Opt. 2016, 21, 025004. [Google Scholar] [CrossRef] [Green Version]
- Dempsey, L.A.; Cooper, R.J.; Powell, S.; Edwards, A.; Lee, C.-W.; Brigadoi, S.; Everdell, N.; Arridge, S.; Gibson, A.P.; Austin, T.; et al. Whole-head functional brain imaging of neonates at cot-side using time-resolved diffuse optical tomography. In Proceedings of the Diffuse Optical Imaging V, Munich, Germany, 21–25 June 2015; Volume 9538, pp. 1–10. [Google Scholar]
- Dempsey, L.A. Development and Application of Diffuse Optical Tomography Systems for Diagnosis and Assessment of Perinatal Brain Injury. Ph.D. Thesis, University College London, London, UK, 2018. [Google Scholar]
- Jiang, J.; Ahnen, L.; Kalyanov, A.; Lindner, S.; Wolf, M.; Majos, S.S. A New Method Based on Graphics Processing Units for Fast Near-Infrared Optical Tomography. Adv. Exp. Med. Biol. 2017, 977, 191–197. [Google Scholar]
- Arnesano, C.; Santoro, Y.; Gratton, E. Digital parallel frequency-domain spectroscopy for tissue imaging. J. Biomed. Opt. 2012, 17, 0960141. [Google Scholar] [CrossRef] [PubMed]
- Pifferi, A.; Torricelli, A.; Bassi, A.; Taroni, P.; Cubeddu, R.; Wabnitz, H.; Grosenick, D.; Möller, M.; Macdonald, R.; Swartling, J.; et al. Performance assessment of photon migration instruments: The MEDPHOT protocol. Appl. Opt. 2005, 44, 2104–2114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wabnitz, H.; Jelzow, A.; Mazurenka, M.; Steinkellner, O.; Macdonald, R.; Milej, D.; Zolek, N.; Kacprzak, M.; Sawosz, P.; Maniewski, R.; et al. Performance assessment of time-domain optical brain imagers, part 1: Basic instrumental performance protocol. J. Biomed. Opt. 2014, 19, 86010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wabnitz, H.; Jelzow, A.; Mazurenka, M.; Steinkellner, O.; Macdonald, R.; Milej, D.; Zolek, N.; Kacprzak, M.; Sawosz, P.; Maniewski, R.; et al. Performance assessment of time-domain optical brain imagers, part 2: nEUROPt protocol. J. Biomed. Opt. 2014, 19, 086012. [Google Scholar] [CrossRef]
- Quarto, G.; Pifferi, A.; Bargigia, I.; Farina, A.; Cubeddu, R.; Taroni, P. Recipes to make organic phantoms for diffusive optical spectroscopy. Appl. Opt. 2013, 52, 2494–2502. [Google Scholar] [CrossRef]
- Wang, L.; Sharma, S.; Aernouts, B.; Ramon, H.; Saeys, W. Supercontinuum laser based double-integrating-sphere system for measuring optical properties of highly dense turbid media in the 1300–2350 nm region with high sensitivity. In Proceedings of the SPIE Photonics Europe, Brussels, Belgium, 16–19 April 2012; Volume 8427, p. 84273B. [Google Scholar]
- Spinelli, L.; Botwicz, M.; Zolek, N.; Kacprzak, M.; Milej, D.; Liebert, A.; Weigel, U.; Durduran, T.; Foschum, F.; Kienle, A.; et al. Inter-Laboratory Comparison of Optical Properties Performed on Intralipid and India Ink. In Proceedings of the Biomedical Optics and 3-D Imaging, Miami, FL, USA, 28 April–2 May 2012; OSA: Washington, DC, USA, 2012; p. BW1A.6. [Google Scholar]
- Aernouts, B.; Zamora-Rojas, E.; Van Beers, R.; Watté, R.; Wang, L.; Tsuta, M.; Lammertyn, J.; Saeys, W. Supercontinuum laser based optical characterization of Intralipid® phantoms in the 500–2250 nm range. Opt. Express 2013, 21, 32450. [Google Scholar] [CrossRef]
- Aernouts, B.; Van Beers, R.; Watté, R.; Lammertyn, J.; Saeys, W. Dependent scattering in Intralipid® phantoms in the 600–1850 nm range. Opt. Express 2014, 22, 6086. [Google Scholar] [CrossRef]
- Spinelli, L.; Botwicz, M.; Zolek, N.; Kacprzak, M.; Milej, D.; Sawosz, P.; Liebert, A.; Weigel, U.; Durduran, T.; Foschum, F.; et al. Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink. Biomed. Opt. Express 2014, 5, 2037. [Google Scholar] [CrossRef]
- Bouchard, J.-P.; Veilleux, I.; Jedidi, R.; Noiseux, I.; Fortin, M.; Mermut, O. Reference optical phantoms for diffuse optical spectroscopy. Part 1—Error analysis of a time resolved transmittance characterization method. Opt. Express 2010, 18, 11495–11507. [Google Scholar] [CrossRef]
- Martelli, F.; Di Ninni, P.; Zaccanti, G.; Contini, D.; Spinelli, L.; Torricelli, A.; Cubeddu, R.; Wabnitz, H.; Mazurenka, M.; Macdonald, R.; et al. Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: Experimental implementation. J. Biomed. Opt. 2014, 19, 076011. [Google Scholar] [CrossRef] [Green Version]
- Pifferi, A.; Torricelli, A.; Cubeddu, R.; Quarto, G.; Re, R.; Sekar, S.K.V.; Spinelli, L.; Farina, A.; Martelli, F.; Wabnitz, H. Mechanically switchable solid inhomogeneous phantom for performance tests in diffuse imaging and spectroscopy. J. Biomed. Opt. 2015, 20, 121304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wabnitz, H.; Taubert, D.R.; Funane, T.; Kiguchi, M.; Eda, H.; Pifferi, A.; Torricelli, A.; Macdonald, R. Characterization of homogeneous tissue phantoms for performance tests in diffuse optics. In Proceedings of the SPIE BiOS, San Francisco, CA, USA, 13–18 February 2016; Volume 9700, p. 970004. [Google Scholar]
- Xu, R.X.; Allen, D.W.; Huang, J.; Gnyawali, S.; Melvin, J.; Elgharably, H.; Gordillo, G.; Huang, K.; Bergdall, V.; Litorja, M.; et al. Developing digital tissue phantoms for hyperspectral imaging of ischemic wounds. Biomed. Opt. Express 2012, 3, 1433. [Google Scholar] [CrossRef] [Green Version]
- Wabnitz, H.; Hwang, J.; Yang, L.; Macdonald, R. Digital phantom for time-domain near-infrared spectroscopy of tissue: Concept and proof-of-principle experiments. In Proceedings of the SPIE BiOS, San Francisco, CA, USA, 2–7 February 2019; p. 20. [Google Scholar]
- Spinelli, L.; Rizzolo, A.; Vanoli, M.; Grassi, M.; Zerbini, P.E.; Pimentel, R.; Torricelli, A. Optical properties of pulp and skin in Brazilian mangoes in the 540–900 nm spectral range: Implication for non-destructive maturity assessment by time-resolved reflectance spectroscopy. In Proceedings of the International Conference of Agricultural Engineering, CIGR-AgEng2012, Valencia, Spain, 8–12 July 2012; p. C–2096. [Google Scholar]
- Amendola, C.; Pirovano, I.; Lacerenza, M.; Contini, D.; Spinelli, L.; Cubeddu, R.; Torricelli, A.; Re, R. Use of 3D printed PLA for diffuse optics. In Proceedings of the Biophotonics Congress: Biomedical Optics 2020 (Translational, Microscopy, OCT, OTS, BRAIN), Washington, DC, USA, 20–23 April 2020; pp. 32–33. [Google Scholar]
- Dalla Mora, A.; Martinenghi, E.; Contini, D.; Tosi, A.; Boso, G.; Durduran, T.; Arridge, S.; Martelli, F.; Farina, A.; Torricelli, A.; et al. Fast silicon photomultiplier improves signal harvesting and reduces complexity in time-domain diffuse optics. Opt. Express 2015, 23, 13937–13946. [Google Scholar] [CrossRef] [Green Version]
- Martinenghi, E.; Dalla Mora, A.; Contini, D.; Farina, A.; Villa, F.; Torricelli, A.; Pifferi, A. Spectrally Resolved Single-Photon Timing of Silicon Photomultipliers for Time-Domain Diffuse Spectroscopy. IEEE Photonics J. 2015, 7, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Martinenghi, E.; Di Sieno, L.; Contini, D.; Sanzaro, M.; Pifferi, A.; Dalla Mora, A. Time-resolved single-photon detection module based on silicon photomultiplier: A novel building block for time-correlated measurement systems. Rev. Sci. Instrum. 2016, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Sieno, L.; Boetti, N.G.; Mora, A.D.; Pugliese, D.; Farina, A.; Konugolu Venkata Sekar, S.; Ceci-Ginistrelli, E.; Janner, D.; Pifferi, A.; Milanese, D. Towards the use of bioresorbable fibers in time-domain diffuse optics. J. Biophotonics 2017, 11, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mora, A.D.; Di Sieno, L.; Venkata Sekar, S.K.; Farina, A.; Contini, D.; Boetti, N.G.; Milanese, D.; Nissinen, J.; Pifferi, A. Novel technologies for time-domain diffuse optics: Miniaturized wearable devices and bioresorbable optical fibers. In Proceedings of the Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS), Hollywood, FL, USA, 3–6 April 2018; p. F90-O. [Google Scholar]
- D’Andrea, C.; Spinelli, L.; Bassi, A.; Giusto, A.; Contini, D.; Swartling, J.; Torricelli, A.; Cubeddu, R. Time-resolved spectrally constrained method for the quantification of chromophore concentrations and scattering parameters in diffusing media. Opt. Express 2006, 14, 1888. [Google Scholar] [CrossRef] [PubMed]
- Giusto, A.; D’Andrea, C.; Spinelli, L.; Contini, D.; Torricelli, A.; Martelli, F.; Zaccanti, G.; Cubeddu, R. Monitoring absorption changes in a layered diffusive medium by white-light time-resolved reflectance spectroscopy. IEEE Trans. Instrum. Meas. 2010, 59, 1925–1932. [Google Scholar] [CrossRef]
- Pifferi, A.; Bassi, A.; Spinelli, L.; Cubeddu, R.; Taroni, P. Time-Resolved Broadband Diffuse Spectroscopy Using a Differential Absorption Approach. In Proceedings of the Biomedical Optics and 3-D Imaging, Miami, FL, USA, 11–14 April 2010; p. BSuD45; Volume 64, p. BSuD45. [Google Scholar]
- Yang, L.; Wabnitz, H.; Gladytz, T.; Macdonald, R.; Grosenick, D. Spatially-enhanced time-domain NIRS for accurate determination of tissue optical properties. Opt. Express 2019, 27, 26415. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Lanka, P.; Wabnitz, H.; Cubeddu, R.; Gladytz, T.; Konugolu Venkata Sekar, S.; Grosenick, D.; Pifferi, A.; Macdonald, R. Spatially-enhanced time-domain NIRS for determination of optical properties in layered structures. In Proceedings of the European Conference on Biomedical Optics, Munich, Germany, 23–25 June 2019; p. 9. [Google Scholar]
- Yang, L.; Wabnitz, H.; Gladytz, T.; Sudakou, A.; Macdonald, R.; Grosenick, D. Space-enhanced time-domain diffuse optics for determination of tissue optical properties in two-layered structures. Biomed. Opt. Express 2020, 11, 6570. [Google Scholar] [CrossRef]
- Wojtkiewicz, S.; Gerega, A.; Zanoletti, M.; Sudakou, A.; Contini, D.; Liebert, A.; Durduran, T.; Dehghani, H. Self-calibrating time-resolved near infrared spectroscopy. Biomed. Opt. Express 2019, 10, 2657. [Google Scholar] [CrossRef]
- Kovacsova, Z.; Bale, G.; Mitra, S.; Lange, F.; Tachtsidis, I. Absolute quantification of cerebral tissue oxygen saturation with multidistance broadband NIRS in newborn brain. Biomed. Opt. Express 2021, 12, 907. [Google Scholar] [CrossRef]
- Wabnitz, H.; Contini, D.; Spinelli, L.; Torricelli, A.; Liebert, A. Depth-selective analysis in time-domain optical brain imaging: Moments vs. time windows. Biomed. Opt. Express 2020, 11, 4224–4243. [Google Scholar] [CrossRef] [PubMed]
- Sudakou, A.; Yang, L.; Wabnitz, H.; Wojtkiewicz, S.; Liebert, A. Performance of measurands in time-domain optical brain imaging: Depth selectivity versus contrast-to-noise ratio. Biomed. Opt. Express 2020, 11, 4348–4365. [Google Scholar] [CrossRef]
- Lanka, P.; Yang, L.; Orive-Miguel, D.; Veesa, J.D.; Tagliabue, S.; Sudakou, A.; Samaei, S.; Forcione, M.; Kovacsova, Z.; Behera, A.; et al. The BITMAP exercise: A multi-laboratory performance assessment campaign of diffuse optical instrumentation. In Proceedings of the Diffuse Optical Spectroscopy and Imaging VII, Munich, Germany, 23–25 June 2019; Dehghani, H., Wabnitz, H., Eds.; SPIE: Washington, DC, USA; p. 44. [Google Scholar]
- Orive-Miguel, D.; Lanka, P.; Yang, L.; Tagliabue, S.; Sudakou, A.; Samaei, S.; Veesa, J.D.; Forcione, M.; Kovacsova, Z.; Behera, A.; et al. The BitMap dataset: An open dataset on performance assessment of diffuse optics instruments. In Proceedings of the European Conference on Biomedical Optics 2019, Munich, Germany, 23–25 June 2019; p. 45. [Google Scholar]
- Farina, A.; Pifferi, A.; Torricelli, A.; Bargigia, I.; Spinelli, L.; Cubeddu, R.; Foschum, F.; Jäger, M.; Simon, E.; Fugger, O.; et al. Multi-center study of the optical properties of the human head. In Proceedings of the Biomedical Optics 2014, Miami, FL, USA, 26–30 April 2014; Volume 6, p. BS3A.9. [Google Scholar]
- Sordillo, L.A.; Lindwasser, L.; Budansky, Y.; Leproux, P.; Alfano, R.R. Near-infrared supercontinuum laser beam source in the second and third near-infrared optical windows used to image more deeply through thick tissue as compared with images from a lamp source. J. Biomed. Opt. 2015, 20, 030501. [Google Scholar] [CrossRef] [PubMed]
- Yadav, J.; Rani, A.; Singh, V.; Murari, B.M. Prospects and limitations of non-invasive blood glucose monitoring using near-infrared spectroscopy. Biomed. Signal. Process. Control 2015, 18, 214–227. [Google Scholar] [CrossRef]
- Rostami, E. Glucose and the injured brain-monitored in the neurointensive care unit. Front. Neurol. 2014, 5. [Google Scholar] [CrossRef] [Green Version]
- Pinchefsky, E.F.; Hahn, C.D.; Kamino, D.; Chau, V.; Brant, R.; Moore, A.M.; Tam, E.W.Y. Hyperglycemia and Glucose Variability Are Associated with Worse Brain Function and Seizures in Neonatal Encephalopathy: A Prospective Cohort Study. J. Pediatr. 2019, 209, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhu, C.; Jiang, J.; Xu, K. Scattering-independent glucose absorption measurement using a spectrally resolved reflectance setup with specialized variable source-detector separations. Biomed. Opt. Express 2018, 9, 5903. [Google Scholar] [CrossRef]
- Fuglerud, S.S.; Milenko, K.; Ellingsen, R.; Aksnes, A.; Hjelme, D.R. Feasibility of supercontinuum sources for use in glucose sensing by absorption spectroscopy. In Proceedings of the European Conference on Biomedical Optics 2019, Munich, Germany, 23–25 June 2019; p. 11073_13. [Google Scholar]
- Quarto, G.; Farina, A.; Pifferi, A.; Taroni, P.; Miniati, M. Time-resolved optical spectroscopy of the chest: Is it possible to probe the lung? In Proceedings of the European Conference on Biomedical Optics 2013, Munich, Germany, 12–16 May 2013; Taroni, P., Dehghani, H., Eds.; SPIE: Washington, DC, USA, 2013; p. 87990Q. [Google Scholar]
- Vignal, C.; Boumans, T.; Montcel, B.; Ramstein, S.; Verhoye, M.; Van Audekerke, J.; Mathevon, N.; Van der Linden, A.; Mottin, S. Measuring brain hemodynamic changes in a songbird: Responses to hypercapnia measured with functional MRI and near-infrared spectroscopy. Phys. Med. Biol. 2008, 53, 2457–2470. [Google Scholar] [CrossRef] [PubMed]
- Wabnitz, H.; Jelzow, A.; Mazurenka, M.; Steinkellner, O.; Macdonald, R.; Pifferi, A.; Torricelli, A.; Contini, D.; Zucchelli, L.M.G.; Spinelli, L.; et al. Performance assessment of time-domain optical brain imagers: A multi-laboratory study. In Proceedings of the SPIE BiOS, San Francisco, CA, USA, 2–7 February 2013; Volume 8583, pp. 85830L–85830L–14. [Google Scholar]
- Ferocino, E.; Di Sciacca, G.; Di Sieno, L.; Dalla Mora, A.; Pifferi, A.; Arridge, S.; Martelli, F.; Taroni, P.; Farina, A. Spectral approach to time domain diffuse optical tomography for breast cancer: Validation on meat phantoms. In Proceedings of the European Conference on Biomedical Optics 2019, Munich, Germany, 23–25 June 2019; p. 11074_7. [Google Scholar]
- Diop, M.; St. Lawrence, K. Improving the depth sensitivity of time-resolved measurements by extracting the distribution of times-of-flight. Biomed. Opt. Express 2013, 4, 447. [Google Scholar] [CrossRef] [PubMed]
- Nachabé, R.; Evers, D.J.; Hendriks, B.H.W.; Lucassen, G.W.; van der Voort, M.; Rutgers, E.J.; Peeters, M.-J.V.; Van der Hage, J.A.; Oldenburg, H.S.; Wesseling, J.; et al. Diagnosis of breast cancer using diffuse optical spectroscopy from 500 to 1600 nm: Comparison of classification methods. J. Biomed. Opt. 2011, 16, 087010. [Google Scholar] [CrossRef]
- Pifferi, A.; Farina, A.; Torricelli, A.; Quarto, G.; Cubeddu, R.; Taronia, P. Review: Time-domain broadband near infrared spectroscopy of the female breast: A focused review from basic principles to future perspectives. J. Near Infrared Spectrosc. 2012, 20, 223. [Google Scholar] [CrossRef] [Green Version]
- Lindner, C.; Mora, M.; Farzam, P.; Squarcia, M.; Johansson, J.; Weigel, U.M.; Halperin, I.; Hanzu, F.A.; Durduran, T. Diffuse optical characterization of the healthy human thyroid tissue and two pathological case studies. PLoS ONE 2016, 11, e0147851. [Google Scholar] [CrossRef]
- Lange, F.; Tachtsidis, I. Clinical brain monitoring with time domain NIRS: A review and future perspectives. Appl. Sci. 2019, 9, 1612. [Google Scholar] [CrossRef] [Green Version]
- Buttafava, M.; Martinenghi, E.; Tamborini, D.; Contini, D.; Mora, A.D.; Renna, M.; Torricelli, A.; Pifferi, A.; Zappa, F.; Tosi, A. A Compact Two-Wavelength Time-Domain NIRS System Based on SiPM and Pulsed Diode Lasers. IEEE Photonics J. 2017, 9, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Bérubé-Lauzière, Y.; Crotti, M.; Boucher, S.; Ettehadi, S.; Pichette, J.; Rech, I. Prospects on Time-Domain Diffuse Optical Tomography Based on Time-Correlated Single Photon Counting for Small Animal Imaging. J. Spectrosc. 2016, 2016, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Kaynezhad, P.; Mitra, S.; Bale, G.; Bauer, C.; Lingam, I.; Meehan, C.; Avdic-Belltheus, A.; Martinello, K.A.; Bainbridge, A.; Robertson, N.J.; et al. Quantification of the severity of hypoxic-ischemic brain injury in a neonatal preclinical model using measurements of cytochrome-c-oxidase from a miniature broadband-near-infrared spectroscopy system. Neurophotonics 2019, 6, 1. [Google Scholar] [CrossRef]
- Lange, F.; Bale, G.; Kaynezhad, P.; Pollock, R.D.; Stevenson, A.; Tachtsidis, I. Broadband NIRS Cerebral Evaluation of the Hemodynamic and Oxidative State of Cytochrome-c-Oxidase Responses to +Gz Acceleration in Healthy Volunteers. In Oxygen Transport to Tissue XLI; Springer: Cham, Switzerland, 2020; Volume 1232. [Google Scholar]
- Wu, J.; Zheng, G.; Liu, X.; Qiu, J. Near-infrared laser driven white light continuum generation: Materials, photophysical behaviours and applications. Chem. Soc. Rev. 2020, 49, 3461–3483. [Google Scholar] [CrossRef]
- Alayed, M.; Deen, M. Time-Resolved Diffuse Optical Spectroscopy and Imaging Using Solid-State Detectors: Characteristics, Present Status, and Research Challenges. Sensors 2017, 17, 2115. [Google Scholar] [CrossRef] [Green Version]
- Dalla Mora, A.; Di Sieno, L.; Re, R.; Pifferi, A.; Contini, D. Time-Gated Single-Photon Detection in Time-Domain Diffuse Optics: A Review. Appl. Sci. 2020, 10, 1101. [Google Scholar] [CrossRef] [Green Version]
- Mora, A.D.; Contini, D.; Arridge, S.; Martelli, F.; Tosi, A.; Boso, G.; Farina, A.; Durduran, T.; Martinenghi, E.; Torricelli, A.; et al. Towards next-generation time-domain diffuse optics for extreme depth penetration and sensitivity. Biomed. Opt. Express 2015, 6, 1749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renna, M.; Buttafava, M.; Behera, A.; Zanoletti, M.; Di Sieno, L.; Mora, A.D.; Contini, D.; Tosi, A. Eight-Wavelength, Dual Detection Channel Instrument for Near-Infrared Time-Resolved Diffuse Optical Spectroscopy. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1–11. [Google Scholar] [CrossRef] [Green Version]
System ID | Group | Year | SC Laser Type/Model | SC Laser System Characteristics | System Detection Characteristics | ||||
---|---|---|---|---|---|---|---|---|---|
Spectral Capacity | Power (mW) | Repetition Rate (kHz) | Pulse Width (ps) | Detector Type | N° of Channels | ||||
1 | Lund Institute of Technology, Lund, Sweden | 1993 | In-house | White light centred at 792 nm | 1000 | 0.01 | 200 | CCD camera | NA |
2 | Politecnico di Milano, Milan, Italy | 2004 | In-house | 550–1100 nm | 40 | 85,000 | 50–100 | PMT | 16 |
3 | Lund Institute of Technology, Lund, Sweden | 2004 | In-house | 500–1200 nm | NA | 80,000 | 100 | Streak camera | NA |
4 | Université Jean Monnet, Saint-Etienne, France. | 2005 | In-house | 450–950 nm | 1 | 1 | 170 | Streak camera | NA |
5 | Politecnico di Milano, Milan, Italy | 2006 | In-house | 550–1050 nm | 100 | NA | 60–140 | PMT | 32 |
6 | Politecnico di Milano, Milan, Italy | 2007 | SC450, Fianium | 120 bands (600–1000 nm) FWHM = 5–20 nm | 2600 (total) | 20,000 | 10 | SPAD | 1 |
7 | Lund University, Lund, Sweden | 2009 | SC500, Fianium | 650–1400 nm | NA | 80,000 | 50 | PMT | 2 |
8 | Northeastern University, Boston, United States | 2010 | Koheras SuperK, NKT Photonics | 550–850 nm | NA | 80,000 | 30 | PMT | 16 |
9 | National Optics Institute, Québec, Canada | 2010 | SC400, Fianium | Filtered at 660 nm | NA | 40,000 | 90 | PMT | 1 |
10 | Physikalisch-Technische Bundesanstalt, Berlin, Germany | 2011 | Fianium (model NA) | Tuned at 690 nm | NA | 20,000 | 100 | SPAD | 1 |
11 | University of California, Irvine, United States | 2012 | SC450, Fianium | 680–850 nm | 2000 | 20,000 | 3 | PMT | 2 |
12 | Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Warsaw, Poland | 2012 | SC450-4 (Fianium) | 685–860, 16 bands | NA | 40,000 | NA | PMT | 16 |
13 | Politecnico di Milano, Milan, Italy | 2012 | SC450, Fianium | 1100–1700 nm FWHM = 6.6–20.7 nm | 6000 (total) | 40,000 | 10 | SPAD | 1 |
14 | Massachusetts General Hospital, Boston, United States | 2013 | SC600-8, Fianium | 680, 710, 747, 760, 800, 820, 830, 840 nm | 9000 (total) | 60,000 | NA | ICCD | 175 |
15 | Politecnico di Milano, Milan, Italy | 2010 | SuperK Extreme, NKT Photonics | 600–1100 m | 5000 (total) | 2000–80,000 | 10 | PMT | 1 |
16 | Katholieke Universiteit Leuven, Leuven, Belgium | 2012 | SC450-4, Fianium | 450–2400 nm | 4000 (total) | NA | NA | PINdiode | 1 |
17 | University College London, London, United Kingdom | 2014 | SC450, Fianium | 690, 750, 800, 850 nm | 4.5 | 40,000 | 4 | PMT | 32 |
18 | Politecnico di Milano, Milan, Italy | 2014 | SC500-6, Fianium | Tuned at 800 nm | NA | 40,500 | NA | HPM | 1 |
19 | CREATIS, Université de Lyon, Lyon, France | 2015 | WhiteLase Micro, Fianium | 500–1000 nm | 10 | 2000 | NA | ICCD | 8 |
20 | Politecnico di Milano, Milan, Italy | 2015 | SC450, Fianium | 620 nm (40-nm bandwidth) | NA | 80,000 | NA | SPAD | 1 |
21 | Politecnico di Milano, Milan, Italy | 2015 | SC450, Fianium | 750 nm (5-nm bandwidth) | NA | 40,000 | NA | SPAD | 1 |
22 | Politecnico di Milano, Milan, Italy | 2015 | SC450, Fianium | 690 nm | NA | 40,000 | NA | SiPM | 1 |
23 | The City College of New York, New York, United States | 2015 | STM-2000-IR, Leukos | 400–2500 nm | 0.5/nm | NA | NA | IR-CCD | 1 |
24 | Politecnico di Milano, Milan, Italy | 2015 | SC450, Fianium | 600–1350 nm | NA | 40,000 | NA | SiPM and PMT | 2 |
25 | Politecnico di Milano, Milan, Italy | 2016 | SC500-6, Fianium | 760, 860 nm | 30 | 40,500 | NA | SPAD | 1 |
26 | Physikalisch-Technische Bundesanstalt, Berlin, Germany | 2016 | SC500-6, Fianium | Tuned at 650 nm | NA | 40,500 | 100 | SPAD | 1 |
27 | Politecnico di Milano, Milan, Italy | 2017 | Fianium (model NA) | 750, 800, 850 nm | NA | 40,000 | NA | SPAD | 2 |
28 | State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, China | 2018 | SC46 (YSL photonics) | 1100–1350 nm (12 bands) | 8000 (Total) | 10–80,000 | NA | InGaAs photodiode | 1 |
29 | Rensselaer Polytechnique Institute, Troy, United States | 2018 | MaiTai, Spectra Physics (1) SC Pro, YSL Photonics (2) | (1) 690–1040 nm FWHM = 15 nm (2) 400–2200 nm | (1) NA (2) 4000 (total) | (1) 80,000 (2) 25,000 | (1) 100 (2) 150–200 | PMT and NIR camera | 2 |
30 | Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Warsaw, Poland | 2018 | SC450-4, Fianium | 650–850 nm, 16 bands of 12.5 nm | NA | 40,000–80,000 | NA | PMT | 1 |
31 | University of Pennsylvania, Philadelphia, United States | 2018 | SuperK Extreme, NKT Photonics | 730, 750, 786, 810, 830, 850 nm | NA | 78,000 | 5 | PMT | 2 |
32 | Physikalisch-Technische Bundesanstalt, Berlin, Germany | 2019 | FIU-15 PP, NKT Photonics | NA | NA | NA | NA | SPAD and HPM | 2 |
33 | University of Science and Technology, Trondheim, Norway | 2019 | SuperK Compact, NKT Photonics (1) SCT 500, Fyla (2) | NA | NA | 20 (1) 20,000 (2) | NA | InGaAs detector | 2 |
34 | University of California, Irvine, United States | 2019 | SC400-2, Fianium | 1000 bands (580–950 nm) FWHM = 17.25 nm (mean) | 2000 (total) | NA | NA | sCMOS camera | NA |
35 | University College London, London, United Kingdom | 2019 | SC480-6, Fianium | 16 bands (650–1100 nm) FWHM = 2–3 nm | 6000 (total) | 60,000 | 4 | PMT | 4 |
36 | Physikalisch-Technische Bundesanstalt, Berlin, Germany | 2019 | SC500-6, Fianium | Tuned at 800 nm | NA | 40,500 | NA | HPM | 1 |
37 | Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Warsaw, Poland | 2020 | FIU-15 PP, NKT Photonics | Tuned at 760 nm | NA | 39,000 | NA | HPM | 1 |
38 | University College London, London, United Kingdom | 2021 | WhiteLase Micro, Fianium | 600, 630, 665, 784, 800, 818, 835, 851, 868, 881, 894 nm (FWHM = 6–11 nm) | 0.06–0.11 | NA | NA | sCMOS camera | NA |
39 | Biomedical Optics Research Laboratory, University Hospital Zurich and University of Zurich, Switzerland | 2020 | SuperK ExtremeEXR-15 (NKT) | Tuned at 800 nm | 6000 (total) | 80,000 | NA | SPAD camera | NA |
Single Wavelength Sources | Supercontinuum Laser | |||
---|---|---|---|---|
Few Wavelengths | High number of Wavelengths | Few Wavelengths | High Number of Wavelengths | |
Cost | ++ | −− | −− | + |
Stability | + | + | − | − |
Compactness | ++ | −− | −− | + |
Wavelength Choice | Limited | Limited | Unlimited | Unlimited |
Overall | +++ | −− | −− | ++ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lange, F.; Giannoni, L.; Tachtsidis, I. The Use of Supercontinuum Laser Sources in Biomedical Diffuse Optics: Unlocking the Power of Multispectral Imaging. Appl. Sci. 2021, 11, 4616. https://doi.org/10.3390/app11104616
Lange F, Giannoni L, Tachtsidis I. The Use of Supercontinuum Laser Sources in Biomedical Diffuse Optics: Unlocking the Power of Multispectral Imaging. Applied Sciences. 2021; 11(10):4616. https://doi.org/10.3390/app11104616
Chicago/Turabian StyleLange, Frédéric, Luca Giannoni, and Ilias Tachtsidis. 2021. "The Use of Supercontinuum Laser Sources in Biomedical Diffuse Optics: Unlocking the Power of Multispectral Imaging" Applied Sciences 11, no. 10: 4616. https://doi.org/10.3390/app11104616
APA StyleLange, F., Giannoni, L., & Tachtsidis, I. (2021). The Use of Supercontinuum Laser Sources in Biomedical Diffuse Optics: Unlocking the Power of Multispectral Imaging. Applied Sciences, 11(10), 4616. https://doi.org/10.3390/app11104616