Analysis of Different Stop-Jumping Strategies on the Biomechanical Changes in the Lower Limbs
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Experiment Protocol
2.3. Procedure
2.4. Data Collection and Processing
2.5. Statistical Analysis
3. Results
3.1. Statistical Parametric Mapping
3.1.1. Joint Angle, Velocity, Moment, and Power on the Sagittal Plane
- Horizontal landing phase
- Vertical jumping phase
3.1.2. Vertical and Posterior Ground Reaction Force and Energy Work
- Horizontal landing phase
- Vertical jumping phase
3.1.3. Proximal Tibia Anterior Shear Force and Vertical Joint Reaction Force
- Horizontal landing phase
- Vertical jumping phase
3.2. Traditional SPSS Analysis (Peak Variable)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boden, B.P.; Dean, G.S.; Feagin, J.A.; Garrett, W.E. Mechanisms of anterior cruciate ligament injury. Orthopedics 2000, 23, 6. [Google Scholar] [CrossRef]
- Yu, B.; Kirkendall, D.T.; Taft, T.N.; Garrett, W.E., Jr. Lower extremity motor control-related and other risk factors for noncontact anterior cruciate ligament injuries. Instr. Course Lect. 2002, 51, 315–324. [Google Scholar] [PubMed]
- Edwards, S.; Steele, J.R.; Cook, J.L.; Purdam, C.R.; McGhee, D.E.; Munro, B.J. Characterizing patellar tendon loading during the landing phases of a stop-jump task. Scand. J. Med. Sci. Sports 2012, 22, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Ugbolue, U.C. Is there a relationship between strike pattern and injury during running: A review. Phys. Act. Health 2019, 3, 127–134. [Google Scholar] [CrossRef] [Green Version]
- Yin, L.; Sun, D.; Mei, Q.; Gu, Y.; Baker, J.; Feng, N. The kinematics and kinetics analysis of the lower extremity in the landing phase of a stop-jump task. Open Biomed. Eng. J. 2015, 9, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinhold, P.S.; Stewart, J.-D.N.; Liu, H.-Y.; Lin, C.-F.; Garrett, W.E.; Yu, B. The influence of gender-specific loading patterns of the stop-jump task on anterior cruciate ligament strain. Injury 2007, 38, 973–978. [Google Scholar] [CrossRef]
- Devita, P.; Skelly, W.A. Effect of landing stiffness on joint kinetics and energetics in the lower extremity. Med. Sci. Sports Exerc. 1992, 24, 108–115. [Google Scholar] [CrossRef] [Green Version]
- Malinzak, R.A.; Colby, S.M.; Kirkendall, D.T.; Yu, B.; Garrett, W.E. A comparison of knee joint motion patterns between men and women in selected athletic tasks. Clin. Biomech. 2001, 16, 438–445. [Google Scholar] [CrossRef]
- Chappell, J.D.; Yu, B.; Kirkendall, D.T.; Garrett, W.E. A comparison of knee kinetics between male and female recreational athletes in stop-jump tasks. Am. J. Sports Med. 2002, 30, 261–267. [Google Scholar] [CrossRef]
- Onate, J.; Cortes, N. Gender Effect of Fatigue on Lower Extremity Kinematics and Kinetics During Athletic Tasks. ACL Inj. Female Athl. 2012, 221–234. [Google Scholar] [CrossRef]
- Decker, M.J.; Torry, M.R.; Wyland, D.J.; Sterett, W.I.; Steadman, J.R. Gender differences in lower extremity kinematics, kinetics and energy absorption during landing. Clin. Biomech. 2003, 18, 662–669. [Google Scholar] [CrossRef]
- Arendt, E.A.; Agel, J.; Dick, R. Anterior cruciate ligament injury patterns among collegiate men and women. J. Athl. Train. 1999, 34, 86. [Google Scholar]
- Arendt, E.; Dick, R. Knee injury patterns among men and women in collegiate basketball and soccer: NCAA data and review of literature. Am. J. Sports Med. 1995, 23, 696–701. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Herman, D.; Preston, J.; Lu, W.; Kirkendall, D.T.; Garrett, W.E. Immediate effects of a knee brace with a constraint to knee extension on knee kinematics and ground reaction forces in a stop-jump task. Am. J. Sports Med. 2004, 32, 1136–1143. [Google Scholar] [CrossRef] [PubMed]
- Buff, H.-U.; Jones, L.C.; Hungerford, D.S. Experimental determination of forces transmitted through the patello-femoral joint. J. Biomech. 1998, 21, 17–23. [Google Scholar] [CrossRef]
- Grood, E.S.; Suntay, W.J.; Noyes, F.R.; Butler, D. Biomechanics of the knee-extension exercise. Effect of cutting the anterior cruciate ligament. J. Boen. Joint. Surg. Am. 1984, 66, 725–734. [Google Scholar] [CrossRef] [Green Version]
- Markolf, K.L.; Gorek, J.F.; Kabo, J.M.; Shapiro, M.S. Direct measurement of resultant forces in the anterior cruciate ligament. An in vitro study performed with a new experimental technique. J. Bone Jt. Surg. 1990, 72, 557–567. [Google Scholar] [CrossRef]
- Smidt, G.L. Biomechanical analysis of knee flexion and extension. J. Biomech. 1973, 6, 79–92. [Google Scholar] [CrossRef]
- Van Eijden, T.; De Boer, W.; Weijs, W. The orientation of the distal part of the quadriceps femoris muscle as a function of the knee flexion-extension angle. J. Biomech. 1985, 18, 803–809. [Google Scholar] [CrossRef]
- Paterno, M.V.; Rauh, M.J.; Schmitt, L.C.; Ford, K.R.; Hewett, T.E. Incidence of second ACL injuries 2 years after primary ACL reconstruction and return to sport. Am. J. Sports Med. 2014, 42, 1567–1573. [Google Scholar] [CrossRef] [Green Version]
- Webster, K.E.; Feller, J.A. Exploring the high reinjury rate in younger patients undergoing anterior cruciate ligament reconstruction. Am. J. Sports Med. 2016, 44, 2827–2832. [Google Scholar] [CrossRef] [PubMed]
- Butler, R.J.; Dai, B.; Huffman, N.; Garrett, W.E.; Queen, R.M. Lower extremity movement differences persist after anterior cruciate ligament reconstruction and when returning to sports. Clin. J. Sports Med. 2016, 26, 411–416. [Google Scholar] [CrossRef] [PubMed]
- Dai, B.; Butler, R.; Garrett, W.; Queen, R. Using ground reaction force to predict knee kinetic asymmetry following anterior cruciate ligament reconstruction. Scand. J. Med. Sci. Sports 2014, 24, 974–981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, D.; Jiang, X.; Cen, X.; Julien, S.B.; Gu, Y.D. Single-Leg Landings Following a Volleyball Spike May Increase the Risk of Anterior Cruciate Ligament Injury More Than Landing on Both-Legs. Appl. Sci. 2021, 11, 130. [Google Scholar] [CrossRef]
- Xu, D.; Lu, J.; Baker, J.S.; Gus, F.; Gu, Y.D. Temporal kinematic and kinetics differences throughout different landing ways following volleyball spike shots. Proc. Inst. Mech. Eng. Part P J. Sports Eng. Technol. 2021. [Google Scholar] [CrossRef]
- Renner, K.E.; Franck, C.T.; Miller, T.K.; Queen, R.M. Limb asymmetry during recovery from anterior cruciate ligament reconstruction. J. Orthop. Res. 2018, 36, 1887–1893. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, L.C.; Paterno, M.V.; Ford, K.R.; Myer, G.D.; Hewett, T.E. Strength asymmetry and landing mechanics at return to sport after ACL reconstruction. Med. Sci. Sports Exerc. 2015, 47, 1426. [Google Scholar] [CrossRef] [Green Version]
- Maletius, W.; Messner, K. Eighteen-to twenty-four-year follow-up after complete rupture of the anterior cruciate ligament. Am. J. Sports Med. 1999, 27, 711–717. [Google Scholar] [CrossRef]
- Yu, B.; Garrett, W.E. Mechanisms of non-contact ACL injuries. Brit. J. Sports Med. 2007, 41, i47–i51. [Google Scholar] [CrossRef] [Green Version]
- McNair, P.; Marshall, R.; Matheson, J. Important features associated with acute anterior cruciate ligament injury. N. Z. Med. J. 1990, 103, 537–539. [Google Scholar]
- Olsen, O.-E.; Myklebust, G.; Engebretsen, L.; Bahr, R. Injury mechanisms for anterior cruciate ligament injuries in team handball: A systematic video analysis. Am. J. Sports Med. 2004, 32, 1002–1012. [Google Scholar] [CrossRef]
- Sell, T.C.; Ferris, C.M.; Abt, J.P.; Tsai, Y.S.; Myers, J.B.; Fu, F.H.; Lephart, S.M. Predictors of proximal tibia anterior shear force during a vertical stop-jump. J. Orthop. Res. 2007, 25, 1589–1597. [Google Scholar] [CrossRef]
- McNitt-Gray, J.L. Kinetics of the lower extremities during drop landings from three heights. J. Biomech. 1993, 26, 1037–1046. [Google Scholar] [CrossRef]
- Zhou, H.; Chen, C.; Xu, D.; Ukadike, C.U.; Gu, Y.D.; Baker, J.S. Biomechanical Characteristics between Bionic Shoes and Normal Shoes during the Drop-Landing Phase: A Pilot Study. Int. J. Environ. Res. Public Health 2021, 18, 3223. [Google Scholar] [CrossRef] [PubMed]
- Malliaras, P.; Cook, J.; Ptasznik, R.; Thomas, S. Prospective study of change in patellar tendon abnormality on imaging and pain over a volleyball season. Br. J. Sports Med. 2006, 40, 272–274. [Google Scholar] [CrossRef] [Green Version]
- Cappozzo, A.; Cappello, A.; Croce, U.D.; Pensalfini, F. Surface-marker cluster design criteria for 3-D bone movement reconstruction. IEEE Trans. Biomed. Eng. 1997, 44, 1165–1174. [Google Scholar] [CrossRef] [PubMed]
- Butler, R.J.; Willson, J.D.; Fowler, D.; Queen, R.M. Gender differences in landing mechanics vary depending on the type of landing. Clin. J. Sport Med. 2013, 23, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Myers, C.A.; Hawkins, D. Alterations to movement mechanics can greatly reduce anterior cruciate ligament loading without reducing performance. J. Biomech. 2010, 43, 2657–2664. [Google Scholar] [CrossRef]
- Yu, B.; Lin, C.-F.; Garrett, W.E. Lower extremity biomechanics during the landing of a stop-jump task. Clin. Biomech. 2006, 21, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Cowley, H.R.; Ford, K.R.; Myer, G.D.; Kernozek, T.W.; Hewett, T.E. Differences in neuromuscular strategies between landing and cutting tasks in female basketball and soccer athletes. J. Athl. Train. 2006, 41, 67. [Google Scholar]
- Xu, D.; Cen, X.; Wang, M.; Rong, M.; István, B.; Baker, J.S.; Gu, Y. Temporal Kinematic Differences between Forward and Backward Jump-Landing. Int. J. Environ. Res. Public Health 2020, 17, 6669. [Google Scholar] [CrossRef]
- Xu, D.; Lu, Z.; Shen, S.; Gus, F.; Ukadike, C.U.; Gu, Y.D. The Differences in Lower Extremity Joints Energy Dissipation Strategy during Landing between Athletes with Symptomatic Patellar Tendinopathy (PT) and without Patellar Tendinopathy (UPT). Mol. Cell. Biomech. 2021, 18, 2. [Google Scholar] [CrossRef]
- Howe, L.P.; Bampouras, T.M.; North, J.; Waldron, M. Ankle dorsiflexion range of motion is associated with kinematic but not kinetic variables related to bilateral drop-landing performance at various drop heights. Hum. Mov. Sci. 2019, 64, 320–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pataky, T.C.; Robinson, M.A.; Vanrenterghem, J. Vector field statistical analysis of kinematic and force trajectories. J. Biomech. 2013, 46, 2394–2401. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Song, Y.; Shin, C.S. Effect of the sagittal ankle angle at initial contact on energy dissipation in the lower extremity joints during a single-leg landing. Gait Posture 2018, 62, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, J.T.; Padua, D.A. Influence of trunk flexion on hip and knee joint kinematics during a controlled drop landing. Clin. Biomech. 2008, 23, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Whitting, J.W.; Steele, J.R.; Mcghee, D.E.; Munro, B.J. Dorsiflexion capacity affects achilles tendon loading during drop landings. Med. Sci. Sports Exerc. 2011, 43, 706–713. [Google Scholar] [CrossRef] [PubMed]
- Singleton, M.C.; LeVeau, B.F. The hip joint: Structure, stability, and stress: A review. Phys. Ther. 1975, 55, 957–973. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.-T. Changes in biomechanical properties during drop jumps of incremental height. J. Strength Cond. Res. 2011, 25, 2510–2518. [Google Scholar] [CrossRef]
- Pain, M.T.; Challis, J.H. The influence of soft tissue movement on ground reaction forces, joint torques and joint reaction forces in drop landings. J. Biomech. 2006, 39, 119–124. [Google Scholar] [CrossRef] [Green Version]
Statistical Parametric Mapping | Paired t-Tests | |
---|---|---|
A stop-jumping phase | A stop-jumping phase | |
Horizontal landing phase | Vertical jumping phase | Peak value |
SJR vs. SJF | SJR vs. SJF | SJR vs. SJF |
Joint Kinematics on Sagittal Plane | Peak | SJR Mean ± SD | SJF Mean ± SD | p Value |
---|---|---|---|---|
Ankle Angle (°) | Dorsiflexion | 16.99 (3.11) | 12.86 (3.29) | 0.001 * |
Plantarflexion | −33.5 (6.43) | −33.81 (6.3) | 0.872 | |
Knee Angle (°) | Extension | −18.99 (7.19) | −23.03 (10.31) | 0.141 |
Flexion | −88.63 (3.18) | −91.16 (5.67) | 0.021 * | |
Hip Angle (°) | Extension | −19.68 (6.08) | −21.98 (6.01) | 0.125 |
Flexion | −80.51 (3.91) | −6.56 (3.47) | <0.001 * | |
Ankle Velocity (°/s) | Dorsiflexion | 220.95 (36.07) | 475.64 (112.44) | <0.001 * |
Plantarflexion | −968.31 (92.94) | −883.18 (105.34) | 0.014 * | |
Knee Velocity (°/s) | Extension | 842.58 (59.43) | 827.93 (76.74) | 0.510 |
Flexion | −409.99 (65.25) | −400.76 (61.73) | 0.495 | |
Hip Velocity (°/s) | Extension | 377.83 (121.64) | 392.68 (116.63) | 0.637 |
Flexion | −208.17 (76.6) | −165.25 (59.47) | 0.054 |
Joint Kinetics on Sagittal Plane | Peak | SJR Mean ± SD | SJF Mean ± SD | p Value |
---|---|---|---|---|
Ankle Moment (Nm/kg) | Dorsiflexion | 0.64 (0.2) | 0.03 (0.04) | <0.001 * |
Plantarflexion | −1.66 (0.2) | −1.65 (0.29) | 0.910 | |
Knee Moment (Nm/kg) | Extension | 3.08 (0.27) | 2.72 (0.36) | 0.001 * |
Flexion | −0.67 (0.33) | −0.47 (0.34) | 0.015 * | |
Hip Moment (Nm/kg) | Extension | 4.18 (1.23) | 2.76 (0.44) | <0.001 * |
Flexion | −1.7 (0.79) | −0.99 (0.3) | <0.001 * | |
Ankle Power (W/kg) | Dorsiflexion | 11.26 (2.04) | 8.39 (0.56) | <0.001 * |
Plantarflexion | −3.36 (1.26) | −4.63 (0.9) | <0.001 * | |
Knee Power (W/kg) | Extension | 15.27 (2.97) | 16.44 (2.14) | 0.236 |
Flexion | −13.99 (3.97) | −12.07 (2.38) | 0.061 | |
Hip Power (W/kg) | Extension | 19.21 (6.25) | 7.09 (2) | <0.001 * |
Flexion | −6.33 (1.83) | −5.05 (0.95) | 0.019 * |
Ground Reaction Force (BW). | SJR Mean ± SD | SJF Mean ± SD | p Value |
---|---|---|---|
Peak VGRF | 1.75 (0.29) | 1.56 (0.18) | 0.009 * |
Peak PGRF | 0.95 (0.15) | 0.83 (0.11) | 0.003 * |
Vertical Joint Force (N/kg) | SJR Mean ± SD | SJF Mean ± SD | p Value |
---|---|---|---|
Peak Ankle Joint Force | 16.04 (1.97) | 14.04 (1.49) | <0.001 * |
Peak Knee Joint Force | 11.71 (1.45) | 11.18 (1.92) | 0.410 |
Peak Hip Joint Force | 11.62 (1.22) | 11.55 (1.39) | 0.793 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, H.; Xu, D.; Chen, C.; Ugbolue, U.C.; Baker, J.S.; Gu, Y. Analysis of Different Stop-Jumping Strategies on the Biomechanical Changes in the Lower Limbs. Appl. Sci. 2021, 11, 4633. https://doi.org/10.3390/app11104633
Zhou H, Xu D, Chen C, Ugbolue UC, Baker JS, Gu Y. Analysis of Different Stop-Jumping Strategies on the Biomechanical Changes in the Lower Limbs. Applied Sciences. 2021; 11(10):4633. https://doi.org/10.3390/app11104633
Chicago/Turabian StyleZhou, Huiyu, Datao Xu, Chaoyi Chen, Ukadike Chris Ugbolue, Julien S. Baker, and Yaodong Gu. 2021. "Analysis of Different Stop-Jumping Strategies on the Biomechanical Changes in the Lower Limbs" Applied Sciences 11, no. 10: 4633. https://doi.org/10.3390/app11104633
APA StyleZhou, H., Xu, D., Chen, C., Ugbolue, U. C., Baker, J. S., & Gu, Y. (2021). Analysis of Different Stop-Jumping Strategies on the Biomechanical Changes in the Lower Limbs. Applied Sciences, 11(10), 4633. https://doi.org/10.3390/app11104633