Numerical Evaluation of Spinal Stability after Posterior Spinal Fusion with Various Fixation Segments and Screw Types in Patients with Osteoporotic Thoracolumbar Burst Fracture Using Finite Element Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Human Spine FE Model
2.2.1. Intact Model
2.2.2. Spinal Fracture
2.2.3. Fusion Model
2.3. Boundary and Loading Conditions
3. Results
3.1. Model Validation
3.2. Range of Motion
3.3. Equivalent Stress
3.3.1. Equivalent Stress on a Screw
3.3.2. Equivalent Stress of Peri-Implant Bone
3.3.3. Equivalent Stress of IVD
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, X.-Y.; Dai, L.-Y.; Xu, H.-Z.; Chi, Y.-L. Biomechanical effect of the extent of vertebral body fracture on the thoracolumbar spine with pedicle screw fixation: An in vitro study. J. Clin. Neurosci. 2008, 15, 286–290. [Google Scholar] [CrossRef]
- Aono, H.; Tobimatsu, H.; Ariga, K.; Kuroda, M.; Nagamoto, Y.; Takenaka, S.; Furuya, M.; Iwasaki, M. Surgical outcomes of temporary short-segment instrumentation without augmentation for thoracolumbar burst fractures. Injury 2016, 47, 1337–1344. [Google Scholar] [CrossRef]
- Watanabe, K.; Lenke, L.G.; Bridwell, K.H.; Kim, Y.J.; Koester, L.; Hensley, M. Proximal junctional vertebral fracture in adults after spinal deformity surgery using pedicle screw constructs: Analysis of morphological features. Spine 2010, 35, 138–145. [Google Scholar] [CrossRef]
- Jindal, N.; Sankhala, S.; Bachhal, V. The role of fusion in the management of burst fractures of the thoracolumbar spine treated by short segment pedicle screw fixation: A prospective randomised trial. J. Bone Jt. Surg. 2012, 94, 1101–1106. [Google Scholar] [CrossRef]
- Schmidt, H.; Heuer, F.; Simon, U.; Kettler, A.; Rohlmann, A.; Claes, L.; Wilke, H.-J. Application of a new calibration method for a three-dimensional finite element model of a human lumbar annulus fibrosus. Clin. Biomech. 2006, 21, 337–344. [Google Scholar] [CrossRef]
- Pitzen, T.; Geisler, F.; Matthis, D.; Müller-Storz, H.; Barbier, D.; Steudel, W.-I.; Feldges, A. A finite element model for predicting the biomechanical behaviour of the human lumbar spine. Control Eng. Pract. 2002, 10, 83–90. [Google Scholar] [CrossRef]
- Liebschner, M.A.; Kopperdahl, D.L.; Rosenberg, W.S.; Keaveny, T.M. Finite element modeling of the human thoracolumbar spine. Spine 2003, 28, 559–565. [Google Scholar] [CrossRef]
- Huynh, K.T.; Gao, Z.; Gibson, I.; Lu, W.F. Haptically integrated simulation of a finite element model of thoracolumbar spine combining offline biomechanical response analysis of intervertebral discs. Comput. Aided Des. 2010, 42, 1151–1166. [Google Scholar] [CrossRef]
- Areias, B.; Caetano, S.; Sousa, L.; Parente, M.; Jorge, R.; Sousa, H.; Gonçalves, J. Numerical simulation of lateral and transforaminal lumbar interbody fusion, two minimally invasive surgical approaches. Comput. Methods Biomech. Biomed. Eng. 2020, 23, 408–421. [Google Scholar] [CrossRef]
- Fidalgo, D.; Areias, B.; Sousa, L.; Parente, M.; Jorge, R.; Sousa, H.; Gonçalves, J. Minimally invasive transforaminal and anterior lumbar interbody fusion surgery at level L5-S1. Comput. Methods Biomech. Biomed. Eng. 2020, 23, 384–395. [Google Scholar] [CrossRef]
- Schmidt, H.; Heuer, F.; Drumm, J.; Klezl, Z.; Claes, L.; Wilke, H.-J. Application of a calibration method provides more realistic results for a finite element model of a lumbar spinal segment. Clin. Biomech. 2007, 22, 377–384. [Google Scholar] [CrossRef]
- Xu, M.; Yang, J.; Lieberman, I.H.; Haddas, R. Lumbar spine finite element model for healthy subjects: Development and validation. Comput. Methods Biomech. Biomed. Eng. 2017, 20, 1–15. [Google Scholar] [CrossRef]
- Hsieh, Y.-Y.; Tsuang, F.-Y.; Kuo, Y.-J.; Chen, C.-H.; Chiang, C.-J.; Lin, C.-L. Biomechanical analysis of single-level interbody fusion with different internal fixation rod materials: A finite element analysis. BMC Musculoskelet. Disord. 2020, 21, 100. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Xin, D.; Lei, Z.; Zuo, Y.; Zhao, Y. Comparative Three-Dimensional Finite Element Analysis of 4 Kinds of Pedicle Screw Schemes for Treatment of Adult Degenerative Scoliosis. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2020, 26, e922050–e922051. [Google Scholar]
- Santoni, B.; Hynes, R.; McGilvray, K.; Rodriguez-Canessa, G.; Lyons, A.; Henson, M.; Womack, W.; Puttlitz, C. Cortical bone trajectory for lumbar pedicle screws. Spine J. 2009, 9, 366–373. [Google Scholar] [CrossRef]
- Feng, Z.-H.; Li, X.-B.; Tian, N.-F.; Sheng, S.-R.; Li, Y.M.; Phan, K.; Lin, Z.-K.; Joaquim, A.F.; Xuan, J.; Lin, Y. The technique of cortical bone trajectory screw fixation in spine surgery: A comprehensive literature review. AME Med. J. 2018. [Google Scholar] [CrossRef]
- Akpolat, Y.T.; Inceoglu, S.; Kinne, N.; Hunt, D.; Cheng, W.K. Fatigue performance of cortical bone trajectory screw compared with standard trajectory pedicle screw. Spine 2016, 41, E335–E341. [Google Scholar] [CrossRef] [Green Version]
- Baluch, D.A.; Patel, A.A.; Lullo, B.; Havey, R.M.; Voronov, L.I.; Nguyen, N.-L.; Carandang, G.; Ghanayem, A.J.; Patwardhan, A.G. Effect of physiological loads on cortical and traditional pedicle screw fixation. Spine 2014, 39, E1297–E1302. [Google Scholar] [CrossRef] [PubMed]
- Matsukawa, K.; Yato, Y.; Kato, T.; Imabayashi, H.; Asazuma, T.; Nemoto, K. In vivo analysis of insertional torque during pedicle screwing using cortical bone trajectory technique. Spine 2014, 39, E240–E245. [Google Scholar] [CrossRef]
- Goh, T.S.; Lim, B.-Y.; Lee, J.S.; Lee, C.-S. Identification of surgical plan for syndesmotic fixation procedure based on finite element method. Appl. Sci. 2020, 10, 4349. [Google Scholar] [CrossRef]
- Lim, B.-Y.; Kim, Y.; Hoseok, I.; Lee, C.-S. Numerical investigation of the sternoclavicular joint modeling technique for improving the surgical treatment of pectus excavatum. Sci. Rep. 2020, 10, 7357. [Google Scholar] [CrossRef]
- Shin, J.K.; Lim, B.-Y.; Goh, T.S.; Son, S.M.; Kim, H.-S.; Lee, J.S.; Lee, C.-S. Effect of the screw type (S2-alar-iliac and iliac), screw length, and screw head angle on the risk of screw and adjacent bone failures after a spinopelvic fixation technique: A finite element analysis. PLoS ONE 2018, 13, e0201801. [Google Scholar] [CrossRef]
- Zhong, Z.; Chen, S.; Hung, C.-H. Load-and displacement-controlled finite element analyses on fusion and non-fusion spinal implants. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2009, 223, 143–157. [Google Scholar] [CrossRef]
- Goel, V.K.; Kong, W.; Han, J.S.; Weinstein, J.N.; Gilbertson, L.G. A combined finite element and optimization investigation of lumbar spine mechanics with and without muscles. Spine 1993, 18, 1531–1541. [Google Scholar] [CrossRef]
- Chen, C.-S.; Cheng, C.-K.; Liu, C.-L.; Lo, W.-H. Stress analysis of the disc adjacent to interbody fusion in lumbar spine. Med. Eng. Phys. 2001, 23, 485–493. [Google Scholar] [CrossRef]
- Chuang, W.-H.; Kuo, Y.-J.; Lin, S.-C.; Wang, C.-W.; Chen, S.-H.; Chen, Y.-J.; Hwang, J.-R. Comparison among load-, ROM-, and displacement-controlled methods used in the lumbosacral nonlinear finite-element analysis. Spine 2013, 38, E276–E285. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Jung, T.-G.; Park, E.-Y.; Kang, G.-W.; Kim, K.-A.; Lee, S.-J. Biomechanical efficacy of a combined interspinous fusion system with a lumbar interbody fusion cage. Int. J. Precis. Eng. Manuf. 2015, 16, 997–1001. [Google Scholar] [CrossRef]
- Dooris, A.P.; Goel, V.K.; Grosland, N.M.; Gilbertson, L.G.; Wilder, D.G. Load-sharing between anterior and posterior elements in a lumbar motion segment implanted with an artificial disc. Spine 2001, 26, E122–E129. [Google Scholar] [CrossRef]
- Ayturk, U.M.; Garcia, J.J.; Puttlitz, C.M. The micromechanical role of the annulus fibrosus components under physiological loading of the lumbar spine. J. Biomech. Eng. 2010, 132, 061007. [Google Scholar] [CrossRef]
- Mustafy, T.; El-Rich, M.; Mesfar, W.; Moglo, K. Investigation of impact loading rate effects on the ligamentous cervical spinal load-partitioning using finite element model of functional spinal unit C2–C3. J. Biomech. 2014, 47, 2891–2903. [Google Scholar] [CrossRef]
- Casaroli, G.; Galbusera, F.; Jonas, R.; Schlager, B.; Wilke, H.-J.; Villa, T. A novel finite element model of the ovine lumbar intervertebral disc with anisotropic hyperelastic material properties. PLoS ONE 2017, 12, e0177088. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, L.-C.; Li, J.; Zhang, H.; Zhao, J.-X.; Zhang, W. A Hybrid Uniplanar Pedicle Screw System with a New Intermediate Screw for Minimally Invasive Spinal Fixation: A Finite Element Analysis. Biomed Res. Int. 2020, 2020, 5497030. [Google Scholar] [PubMed]
- Kim, C.-J.; Son, S.M.; Heo, J.-Y.; Lee, C.-S. Spinal Stability Evaluation According to the Change in the Spinal Fixation Segment Based on Finite Element Analysis. J. Comput. Struct. Eng. Inst. Korea 2020, 33, 145–152. [Google Scholar] [CrossRef]
- Zhou, F.; Yang, S.; Liu, J.; Lu, J.; Shang, D.; Chen, C.; Wang, H.; Ma, J. Finite element analysis comparing short-segment instrumentation with conventional pedicle screws and the Schanz pedicle screw in lumbar 1 fractures. Neurosurg. Rev. 2020, 43, 301–312. [Google Scholar] [CrossRef]
- Liu, J.; Yang, S.; Zhou, F.; Lu, J.; Xia, C.; Wang, H.; Chen, C. The feasibility of short-segment Schanz screw implanted in an oblique downward direction for the treatment of lumbar 1 burst fracture: A finite element analysis. J. Orthop. Surg. Res. 2020, 15, 1–11. [Google Scholar]
- Wang, T.N.; Wu, B.L.; Duan, R.M.; Yuan, Y.S.; Qu, M.J.; Zhang, S.; Huang, W.; Liu, T.; Yu, X.B. Treatment of Thoracolumbar Fractures Through Different Short Segment Pedicle Screw Fixation Techniques: A Finite Element Analysis. Orthop. Surg. 2020, 12, 601–608. [Google Scholar] [CrossRef]
- Polikeit, A.; Nolte, L.P.; Ferguson, S.J. The effect of cement augmentation on the load transfer in an osteoporotic functional spinal unit: Finite-element analysis. Spine 2003, 28, 991–996. [Google Scholar] [CrossRef]
- Salvatore, G.; Berton, A.; Giambini, H.; Ciuffreda, M.; Florio, P.; Longo, U.G.; Denaro, V.; Thoreson, A.; An, K.-N. Biomechanical effects of metastasis in the osteoporotic lumbar spine: A Finite Element Analysis. BMC Musculoskelet. Disord. 2018, 19, 38. [Google Scholar] [CrossRef]
- Liu, J.; Yang, S.; Lu, J.; Fu, D.; Liu, X.; Shang, D. Biomechanical effects of USS fixation with different screw insertion depths on the vertebrae stiffness and screw stress for the treatment of the L1 fracture. J. Back Musculoskelet. Rehabil. 2018, 31, 285–297. [Google Scholar] [CrossRef]
- Izzo, R.; Guarnieri, G.; Guglielmi, G.; Muto, M. Biomechanics of the spine. Part I: Spinal stability. Eur. J. Radiol. 2013, 82, 118–126. [Google Scholar] [CrossRef]
- Phan, K.; Hogan, J.; Maharaj, M.; Mobbs, R.J. Cortical bone trajectory for lumbar pedicle screw placement: A review of published reports. Orthop. Surg. 2015, 7, 213–221. [Google Scholar] [CrossRef]
- Kang, K.-T.; Koh, Y.-G.; Son, J.; Yeom, J.S.; Park, J.-H.; Kim, H.-J. Biomechanical evaluation of pedicle screw fixation system in spinal adjacent levels using polyetheretherketone, carbon-fiber-reinforced polyetheretherketone, and traditional titanium as rod materials. Compos. Part B Eng. 2017, 130, 248–256. [Google Scholar] [CrossRef]
- Yamamoto, I.; Panjabi, M.M.; Crisco, T.; Oxland, T. Three-dimensional movements of the whole lumbar spine and lumbosacral joint. Spine 1989, 14, 1256–1260. [Google Scholar] [CrossRef]
- Dreischarf, M.; Zander, T.; Shirazi-Adl, A.; Puttlitz, C.; Adam, C.; Chen, C.; Goel, V.; Kiapour, A.; Kim, Y.; Labus, K. Comparison of eight published static finite element models of the intact lumbar spine: Predictive power of models improves when combined together. J. Biomech. 2014, 47, 1757–1766. [Google Scholar] [CrossRef] [Green Version]
- Rohlmann, A.; Zander, T.; Rao, M.; Bergmann, G. Realistic loading conditions for upper body bending. J. Biomech. 2009, 42, 884–890. [Google Scholar] [CrossRef]
- Dreischarf, M.; Rohlmann, A.; Bergmann, G.; Zander, T. Optimised in vitro applicable loads for the simulation of lateral bending in the lumbar spine. Med. Eng. Phys. 2012, 34, 777–780. [Google Scholar] [CrossRef] [PubMed]
- Dreischarf, M.; Rohlmann, A.; Bergmann, G.; Zander, T. Optimised loads for the simulation of axial rotation in the lumbar spine. J. Biomech. 2011, 44, 2323–2327. [Google Scholar] [CrossRef]
- Rohlmann, A.; Neller, S.; Claes, L.; Bergmann, G.; Wilke, H.-J. Influence of a follower load on intradiscal pressure and intersegmental rotation of the lumbar spine. Spine 2001, 26, E557–E561. [Google Scholar] [CrossRef]
- Brinckmann, P.; Grootenboer, H. Change of disc height, radial disc bulge, and intradiscal pressure from discectomy. An in vitro investigation on human lumbar discs. Spine 1991, 16, 641–646. [Google Scholar] [CrossRef]
- Leferink, V.; Nijboer, J.; Zimmerman, K.; Veldhuis, E.; ten Vergert, E.; ten Duis, H. Thoracolumbar spinal fractures: Segmental range of motion after dorsal spondylodesis in 82 patients: A prospective study. Eur. Spine J. 2002, 11, 2–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Post, R.; Leferink, V. Sagittal range of motion after a spinal fracture: Does ROM correlate with functional outcome? Eur. Spine J. 2004, 13, 489–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambati, D.V.; Wright, E.K., Jr.; Lehman, R.A., Jr.; Kang, D.G.; Wagner, S.C.; Dmitriev, A.E. Bilateral pedicle screw fixation provides superior biomechanical stability in transforaminal lumbar interbody fusion: A finite element study. Spine J. 2015, 15, 1812–1822. [Google Scholar] [CrossRef] [Green Version]
- Dicko, A.H.; Tong-Yette, N.; Gilles, B.; Faure, F.; Palombi, O. Construction and validation of a hybrid lumbar spine model for the fast evaluation of intradiscal pressure and mobility. Int. Sci. Index Med. Health Sci. 2015, 9, 134–145. [Google Scholar]
- Wang, B.; Hua, W.; Ke, W.; Lu, S.; Li, X.; Zeng, X.; Yang, C. Biomechanical evaluation of transforaminal lumbar interbody fusion and oblique lumbar interbody fusion on the adjacent segment: A finite element analysis. World Neurosurg. 2019, 126, e819–e824. [Google Scholar] [CrossRef]
- Chen, C.-S.; Cheng, C.-K.; Liu, C.-L. A Biomechanical Comparison of Posterolateral Fusion and Posterior Fusion in the Lumbar Spine. Clin. Spine Surg. 2002, 15, 53–63. [Google Scholar] [CrossRef]
Material | Element Type (Ansys) | Young’s Modulus (MPa) | Poisson’s Ratio | Cross-Section Area (mm2) | |
---|---|---|---|---|---|
Vertebra | Cortical bone | 20-node Solid Element (SOLID186) | EX = 11,300 EY = 11,300 EZ = 22,000 GX = 3800 GY = 5400 GZ = 5400 | UXY = 0.484 UYZ = 0.203 UYX = 0.203 | - |
Cancellous bone | 10-node Solid Element (SOLID187) | EX = 140 EY = 140 EZ = 200 GX = 48.3 GY = 48.3 GZ = 48.3 | UXY = 0.45 UYZ = 0.315 UYX = 0.315 | - | |
Disc | Ground substance | 20-node Solid Element (SOLID186) | Hyperelastic Mooney–Rivlin C1 = 0.3, C2 = −0.9 | - | - |
Nucleus pulposus | 8-node Fluid Element (FLUID30) | 1 | 0.499 | - | |
Screw | Ti6Al4V | 20-node Solid Element (SOLID186) | 110,000 | 0.3 | - |
Spinal rod | |||||
Ligament | ALL | 2-node Link Element (LINK180) | 7.8 (ε < 12%) 20 (ε > 12%) | - | 63.7 |
PLL | 10 (ε < 11%) 20 (ε > 11%) | - | 20 | ||
LF | 15 (ε < 6.2%) 19.5 (ε > 6.2%) | - | 40 | ||
ITL | 10 (ε < 18%) 58.7 (ε > 18%) | - | 1.8 | ||
ISL | 10 (ε < 14%) 11.6 (ε > 14%) | - | 40 | ||
SSL | 8 (ε < 20%) 15 (ε > 20%) | - | 30 |
Moment (Nm) | Fixed Range | Location of Fracture | Equivalent Stress of Screw (MPa) | |
---|---|---|---|---|
This study | 7.5 | T12-L2 | L1 | 132.5 (at Y5 *) |
Li et al. | 7.5 | T12-L2 | L1 | 138.04 |
Zhou et al. | 10 | T12-L2 | L1 | 145.2 ± 14.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, C.-J.; Son, S.M.; Choi, S.H.; Goh, T.S.; Lee, J.S.; Lee, C.-S. Numerical Evaluation of Spinal Stability after Posterior Spinal Fusion with Various Fixation Segments and Screw Types in Patients with Osteoporotic Thoracolumbar Burst Fracture Using Finite Element Analysis. Appl. Sci. 2021, 11, 3243. https://doi.org/10.3390/app11073243
Kim C-J, Son SM, Choi SH, Goh TS, Lee JS, Lee C-S. Numerical Evaluation of Spinal Stability after Posterior Spinal Fusion with Various Fixation Segments and Screw Types in Patients with Osteoporotic Thoracolumbar Burst Fracture Using Finite Element Analysis. Applied Sciences. 2021; 11(7):3243. https://doi.org/10.3390/app11073243
Chicago/Turabian StyleKim, Cheol-Jeong, Seung Min Son, Sung Hoon Choi, Tae Sik Goh, Jung Sub Lee, and Chi-Seung Lee. 2021. "Numerical Evaluation of Spinal Stability after Posterior Spinal Fusion with Various Fixation Segments and Screw Types in Patients with Osteoporotic Thoracolumbar Burst Fracture Using Finite Element Analysis" Applied Sciences 11, no. 7: 3243. https://doi.org/10.3390/app11073243
APA StyleKim, C. -J., Son, S. M., Choi, S. H., Goh, T. S., Lee, J. S., & Lee, C. -S. (2021). Numerical Evaluation of Spinal Stability after Posterior Spinal Fusion with Various Fixation Segments and Screw Types in Patients with Osteoporotic Thoracolumbar Burst Fracture Using Finite Element Analysis. Applied Sciences, 11(7), 3243. https://doi.org/10.3390/app11073243