Modelling and Control of Mechatronic and Robotic Systems
1. Introduction
2. Modelling and Control of Mechatronic and Robotic Systems
3. Final Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Siciliano, B.; Sciavicco, L.; Villani, L.; Oriolo, G. Robotics: Modelling, Planning and Control; Springer Science & Business Media: Berlin, Germany, 2010. [Google Scholar]
- Scalera, L.; Carabin, G.; Vidoni, R.; Wongratanaphisan, T. Energy efficiency in a 4-DOF parallel robot featuring compliant elements. Int. J. Mech. Control 2019, 20, 49–57. [Google Scholar]
- Vidoni, R.; Gasparetto, A.; Giovagnoni, M. A method for modelling three-dimensional flexible mechanisms based on an equivalent rigid-link system. J. Vib. Control 2014, 20, 483–500. [Google Scholar] [CrossRef]
- Trigatti, G.; Boscariol, P.; Scalera, L.; Pillan, D.; Gasparetto, A. A look-ahead trajectory planning algorithm for spray painting robots with non-spherical wrists. In Mechanisms and Machine Science; Springer: Berlin/Heidelberg, Germany, 2019; Volume 66, pp. 235–242. [Google Scholar]
- Boscariol, P.; Gasparetto, A.; Zanotto, V. Model predictive control of a flexible links mechanism. J. Intell. Robot. Syst. 2010, 58, 125–147. [Google Scholar] [CrossRef]
- Vidussi, F.; Boscariol, P.; Scalera, L.; Gasparetto, A. Local and trajectory-based indexes for task-related energetic performance optimization of robotic manipulators. J. Mech. Robot. 2021, 13, 021018. [Google Scholar] [CrossRef]
- Doan, Q.V.; Vo, A.T.; Le, T.D.; Kang, H.J.; Nguyen, N.H.A. A novel fast terminal sliding mode tracking control methodology for robot manipulators. Appl. Sci. 2020, 10, 3010. [Google Scholar] [CrossRef]
- Jensen, K.J.; Ebbesen, M.K.; Hansen, M.R. Adaptive Feedforward Control of a Pressure Compensated Differential Cylinder. Appl. Sci. 2020, 10, 7847. [Google Scholar] [CrossRef]
- Lin, D.; Mottola, G.; Carricato, M.; Jiang, X. modelling and Control of a Cable-Suspended Sling-Like Parallel Robot for Throwing Operations. Appl. Sci. 2020, 10, 9067. [Google Scholar] [CrossRef]
- Jain, S.; Saboo, S.; Pruncu, C.I.; Unune, D.R. Performance investigation of integrated model of quarter car semi-active seat suspension with human model. Appl. Sci. 2020, 10, 3185. [Google Scholar] [CrossRef]
- Li, M.M.; Ma, L.L.; Wu, C.G.; Zhu, R.P. Study on the vibration active control of three-support shafting with smart spring while accelerating over the critical speed. Appl. Sci. 2020, 10, 6100. [Google Scholar] [CrossRef]
- Benotsmane, R.; Dudás, L.; Kovács, G. Trajectory Optimization of Industrial Robot Arms Using a Newly Elaborated “Whip-Lashing” Method. Appl. Sci. 2020, 10, 8666. [Google Scholar] [CrossRef]
- Boschetti, G. A Novel Kinematic Directional Index for Industrial Serial Manipulators. Appl. Sci. 2020, 10, 5953. [Google Scholar] [CrossRef]
- Yan, X.; Chen, B. Energy-Efficiency Improvement and Processing Performance Optimization of Forging Hydraulic Presses Based on an Energy-Saving Buffer System. Appl. Sci. 2020, 10, 6020. [Google Scholar] [CrossRef]
- Zhang, H.; Liang, H.; Tao, X.; Ding, Y.; Yu, B.; Bai, R. Driving Force Distribution and Control for Maneuverability and Stability of a 6WD Skid-Steering EUGV with Independent Drive Motors. Appl. Sci. 2021, 11, 961. [Google Scholar] [CrossRef]
- Botta, A.; Cavallone, P.; Tagliavini, L.; Carbonari, L.; Visconte, C.; Quaglia, G. An Estimator for the Kinematic Behaviour of a Mobile Robot Subject to Large Lateral Slip. Appl. Sci. 2021, 11, 1594. [Google Scholar] [CrossRef]
- Jiao, R.; Chou, W.; Rong, Y.; Dong, M. Anti-disturbance control for quadrotor UAV manipulator attitude system based on fuzzy adaptive saturation super-twisting sliding mode observer. Appl. Sci. 2020, 10, 3719. [Google Scholar] [CrossRef]
- Solis, J.; Karlsson, C.; Johansson, S.; Richardsson, K. Towards the Development of an Automatic UAV-Based Indoor Environmental Monitoring System: Distributed Off-Board Control System for a Micro Aerial Vehicle. Appl. Sci. 2021, 11, 2347. [Google Scholar] [CrossRef]
- Han, H.; Wei, Y.; Ye, X.; Liu, W. Motion planning and coordinated control of underwater vehicle-manipulator systems with inertial delay control and fuzzy compensator. Appl. Sci. 2020, 10, 3944. [Google Scholar] [CrossRef]
- Liu, M.; Li, M.; Zha, F.; Wang, P.; Guo, W.; Sun, L. Local CPG Self Growing Network Model with Multiple Physical Properties. Appl. Sci. 2020, 10, 5497. [Google Scholar] [CrossRef]
- Pepe, G.; Laurenza, M.; Belfiore, N.P.; Carcaterra, A. Quadrupedal Robots’ Gaits Identification via Contact Forces Optimization. Appl. Sci. 2021, 11, 2102. [Google Scholar] [CrossRef]
- Luneckas, M.; Luneckas, T.; Kriaučiūnas, J.; Udris, D.; Plonis, D.; Damaševičius, R.; Maskeliūnas, R. Hexapod Robot Gait Switching for Energy Consumption and Cost of Transport Management Using Heuristic Algorithms. Appl. Sci. 2021, 11, 1339. [Google Scholar] [CrossRef]
- Dimastrogiovanni, M.; Cordes, F.; Reina, G. Terrain Estimation for Planetary Exploration Robots. Appl. Sci. 2020, 10, 6044. [Google Scholar] [CrossRef]
- Caruso, M.; Scalera, L.; Gallina, P.; Seriani, S. Dynamic modelling and Simulation of a Robotic Lander Based on Variable Radius Drums. Appl. Sci. 2020, 10, 8862. [Google Scholar] [CrossRef]
- Carbone, G.; Gerding, E.C.; Corves, B.; Cafolla, D.; Russo, M.; Ceccarelli, M. Design of a Two-DOFs driving mechanism for a motion-assisted finger exoskeleton. Appl. Sci. 2020, 10, 2619. [Google Scholar] [CrossRef] [Green Version]
- Zapatero-Gutiérrez, A.; Castillo-Castañeda, E.; Laribi, M.A. On the Optimal Synthesis of a Finger Rehabilitation Slider-Crank-Based Device with a Prescribed Real Trajectory: Motion Specifications and Design Process. Appl. Sci. 2021, 11, 708. [Google Scholar] [CrossRef]
- Ayoubi, Y.; Laribi, M.A.; Arsicault, M.; Zeghloul, S. Safe pHRI via the Variable Stiffness Safety-Oriented Mechanism (V2SOM): Simulation and Experimental Validations. Appl. Sci. 2020, 10, 3810. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gasparetto, A.; Seriani, S.; Scalera, L. Modelling and Control of Mechatronic and Robotic Systems. Appl. Sci. 2021, 11, 3242. https://doi.org/10.3390/app11073242
Gasparetto A, Seriani S, Scalera L. Modelling and Control of Mechatronic and Robotic Systems. Applied Sciences. 2021; 11(7):3242. https://doi.org/10.3390/app11073242
Chicago/Turabian StyleGasparetto, Alessandro, Stefano Seriani, and Lorenzo Scalera. 2021. "Modelling and Control of Mechatronic and Robotic Systems" Applied Sciences 11, no. 7: 3242. https://doi.org/10.3390/app11073242
APA StyleGasparetto, A., Seriani, S., & Scalera, L. (2021). Modelling and Control of Mechatronic and Robotic Systems. Applied Sciences, 11(7), 3242. https://doi.org/10.3390/app11073242