Association of Mean Daily Polyphenols Intake with Mediterranean Diet Adherence and Anthropometric Indices in Healthy Greek Adults: A Retrospective Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Study Design
2.3. Questionnaires
2.4. Phenol Explorer Database
2.5. Anthropometric Characteristics
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costa, C.; Tsatsakis, A.; Mamoulakis, C.; Teodoro, M.; Briguglio, G.; Carusod, E.; Tsoukalas, D.; Margina, D.; Dardiotis, E.; Kouretas, D.; et al. Current evidence on the effect of dietary polyphenols intake on chronic diseases. Food Chem. Toxicol. 2017, 110, 286–299. [Google Scholar] [CrossRef] [PubMed]
- Williamson, G.; Holst, B. Dietary reference intake (DRI) value for dietary polyphenols: Are we heading in the right direction? BJN 2008, 99, S3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koutelidakis, A.; Dimou, C. The effects of functional food and bioactive compounds on biomarkers of cardiovascular diseases. In Functional Foods Text Book, 1st ed.; Martirosyan, D., Ed.; Functional Food Center: Dallas, TX, USA, 2016; pp. 89–117. [Google Scholar]
- Proestos, C.; Koutelidakis, A.E.; Kapsokefalou, M.; Komaitis, M. Fruits and Vegetables: A Rich Source of Phenolic Acids. In Phenolic Acids: Composition, Applications and Health Benefits, 1st ed.; Munne-Bosch, S., Ed.; Nova Science New Publication: New York, NY, USA, 2014. [Google Scholar]
- Drakou, M.; Birba, A.; Koutelidakis, A.E.; Komaitis, M.; Panagou, E.; Kapsokefalou, M. Antioxidant capacity, total phenolic content and iron and zinc dialyzability in selected table olive, tomatoes and legume Greek varieties from conventional and organic cultivars. Int. J. Food Sci. Nutr. 2015, 66, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Soycan, G.; Schär, M.Y.; Kristek, A.; Boberska, J.; Alsharif, S.N.; Corona, G.; Shewry, P.R.; Spencer, J.P. Composition and content of phenolic acids and avenanthramides in commercial oat products: Are oats an important polyphenol source for consumers? Food Chem. 2019, 3, 100047. [Google Scholar] [CrossRef]
- Cheynier, V.; Dueñas-Paton, M.; Salas, E.; Maury, C.; Souquet, J.-M.; Sarni-Manchado, P.; Fulcrand, H. Structure and Properties of Wine Pigments and Tannins. Am. J. Enol. Vitic. 2006, 57, 298–305. [Google Scholar]
- Koutelidakis, A.E.; Rallidis, L.; Koniari, K.; Panagiotakos, D.; Komaitis, M.; Zampelas, A.; Anastasiou-Nana, M.; Kapsokefalou, M. Effect of green tea on postprandial antioxidant capacity, serum lipids, C Reactive Protein and glucose levels in patients with coronary artery disease. Eur. J. Nutr. 2013, 53, 479–486. [Google Scholar] [CrossRef]
- Kumar, N.; Goel, N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. 2019, 24, e00370. [Google Scholar] [CrossRef]
- Koutelidakis, A.E.; Andritsos, N.D.; Kampolis, D.; Kapsokefalou, M.; Drosinos, E.; Komaitis, M. Antioxidant capacity and antimicrobial activity of selected tea (Camellia sinensis) and Greek aromatic plant extracts in different concentrations and extraction solvent. Curr. Top. Nutraceutical. Res. 2016, 14, 2. [Google Scholar]
- Lewandowska, H.; Kalinowska, M.; Lewandowski, W.; Stępkowski, T.M.; Brzóska, K. The role of natural polyphenols in cell signaling and cytoprotection against cancer development. J. Nutr. Biochem. 2015, 32, 1–19. [Google Scholar] [CrossRef]
- Ramos, S. Effects of dietary flavonoids on apoptotic pathways related to cancer chemoprevention. J. Nutr. Biochem. 2007, 18, 427–442. [Google Scholar] [CrossRef] [Green Version]
- Seyed, M.A.; Jantan, I.; Bukhari, S.N.A.; Vijayaraghavan, K.A. Comprehensive Review on the Chemotherapeutic Potential of Piceatannol for Cancer Treatment, with Mechanistic Insights. J. Agric. Food Chem. 2016, 64, 725–737. [Google Scholar] [CrossRef] [PubMed]
- Koutelidakis, A.E.; Kizis, D.; Argyri, K.; Kyriakou, A.; Komaitis, Μ.; Kapsokephalou, Μ. The Effect of Iron and Fat in a Diet Containing Green Tea Extract (Camellia sinensis) on the Antioxidant Capacity of Some Organs and the mRNA Expression of Specific Genes in Mice. J. Med. Food 2014, 17, 1232–1238. [Google Scholar] [CrossRef]
- Koutelidakis, A.E.; Kapsokefalou, M. Holistic approaches of tea bioactivity: Interactions of tea and meal components studied in vitro and in vivo. In Tea in Health and Disease Prevention; Preedy, V.R., Ed.; Academic Press: London, UK; Elsevier: San Diego, CA, USA, 2012; pp. 437–445. [Google Scholar]
- Saura Calicto, F.; Serano, J.; Goni, I. Intake and bioaccessibility of total polyphenols in a whole diet. Food Chem. 2007, 101, 492–501. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Jiménez, J.; Fezeu, L.; Touvier, M.; Arnault, N.; Manach, C.; Hercberg, S.; Galan, P.; Scalbert, A. Dietary intake of 337 polyphenols in French adults. Am. J. Clin. Nutr. 2011, 93, 1220–1228. [Google Scholar] [CrossRef] [Green Version]
- Tresserra-Rimbaua, A.; Medina-Remóna, A.; Pérez-Jiménezd, J.; Martínez-Gonzálezce, M.A.; Covasb, M.I.; Corellabg, D.; Salas-Salvadóbch, J.; Gómez Graciaci, E.; Lapetrab, J.; Arósk, F.; et al. Dietary intake and major food sources of polyphenols in a Spanish population at high cardiovascular risk: The PREDIMED study Nutrition. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 953–959. [Google Scholar] [CrossRef]
- Grosso, G.; Stepania, U.; Topor-Mądry, R.; Szafraniec, K.; Pająk, A. Estimated dietary intake and major food sources of polyphenols in the Polish arm of the HAPIEE study. Nutrition 2014, 30, 1398–1403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willet, W.C.; Sacks, F.; Trichopoulou, A.; Drescher, G.; Ferro-Luzzi, A.; Helsing, E. Mediterranean diet pyramid: A cultural model for health eating. Am. J. Clin. Nutr. 1995, 61, 1402–1406. [Google Scholar] [CrossRef]
- Konstantinidi, M.; Koutelidakis, A.E. Functional foods and bioactive compounds: A review of its possible role on weight management and obesity’s metabolic consequences. Medicines 2019, 6, 94. [Google Scholar] [CrossRef] [Green Version]
- Trichopoulou, A.; Bamia, C.; Trichopoulos, D. Anatomy of health effects of Mediterranean diet: Greek EPIC prospective cohort study. BMJ 2009, 338. [Google Scholar] [CrossRef] [Green Version]
- Elmaliklis, I.-N.; Liveri, A.; Ntelis, B.; Paraskeva, K.; Goulis, I.; Koutelidakis, A.E. Increased Functional Foods’ Consumption and Mediterranean Diet Adherence May Have a Protective Effect in the Appearance of Gastrointestinal Diseases: A Case–Control Study. Medicines 2019, 6, 50. [Google Scholar] [CrossRef] [Green Version]
- Katsagoni, C.N.; Psarra, G.; Georgoulis, M.; Tambalis, K.; Panagiotakos, D.B.; Sidossis, L.S. High and moderate adherence to Mediterranean lifestyle is inversely associated with overweight, general and abdominal obesity in children and adolescents: The MediLIFE-index. Nutr. Res. 2020, 73, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Kolomvotsou, A.I.; Rallidis, L.S.; Mountzouris, K.C.; Lekakis, J.; Koutelidakis, A.; Efstathiou, S.; Nana-Anastasiou, M.; Zampelas, A. Adherence to Mediterranean diet and close dietetic supervision increase total dietary antioxidant intake and plasma antioxidant capacity in subjects with abdominal obesity. Eur. J. Nutr. 2013, 52, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo-Mora, J.J.; García-Vigara, A.; Sánchez-Sánchez, M.L.; García-Pérez, M.-Á.; Tarín, J.; Cano, A. The Mediterranean diet: A historical perspective on food for health. Maturitas 2020, 132, 65–69. [Google Scholar] [CrossRef]
- Maruca, A.; Catalano, R.; Bagetta, D.; Mesiti, F.; Ambrosio, F.A.; Romeo, I.; Moraca, F.; Rocca, R.; Ortuso, F.; Artese, A.; et al. The Mediterranean Diet as source of bioactive compounds with multi-targeting anti-cancer profile. Eur. J. Med. Chem. 2019, 181, 111579. [Google Scholar] [CrossRef]
- Serra-Majem, L.; Román-Viñas, B.; Sanchez-Villegas, A.; Guasch-Ferré, M.; Corella, D.; Vecchia, C.L. Benefits of the Mediterranean diet: Epidemiological and molecular aspects. Mol. Asp. Med. 2019, 67, 1–55. [Google Scholar] [CrossRef]
- Medina-Remón, A.; Casas, R.; Tressserra-Rimbau, A.; Ros, E.; Martínez-González, M.A.; Fitó, M.; Corella, D.; Salas-Salvadó, J.; Lamuela-Raventos, R.M.; Estruch, R. Polyphenol intake from a Mediterranean diet decreases inflammatory biomarkers related to atherosclerosis: A substudy of the PREDIMED trial. Br. J. Clin. Pharmacol. 2016, 83, 114–128. [Google Scholar] [CrossRef] [Green Version]
- Godos, J.; Rapisard, G.; Marventano, S.; Galvano, F.; Mistretta, A.; Grossoa, G. Association between polyphenol intake and adherence to the Mediterranean diet in Sicily, southern Italy. NFS J. 2017, 8, 1–7. [Google Scholar] [CrossRef]
- Cham Salaün, H.; Thariat, J.; Vignot, M.; Merrouche, Y.; Vignot, S. Obésité et cancer. Bull. Cancer 2017, 104, 30–41. [Google Scholar] [CrossRef]
- Andreoli, B.; Mantovani, A.; Andreoli, C. Type 2 Diabetes, sarcopenic obesity and Mediterranean food pattern: Considerations about the therapeutic effect and the problem of maintaining weight loss and healthy habits. The outpatient experience of two clinical cases. J. Clin. Transl. Endocrinol. 2020, 16, 100061. [Google Scholar] [CrossRef]
- Vilija, M.; Romualdas, M. Unhealthy food in relation to posttraumatic stress symptoms among adolescents. Appetite 2014, 74, 86–91. [Google Scholar] [CrossRef]
- Crittenden, A.N.; Schnorr, S.L. Current views on hunter gatherer nutrition and the evolution of the human diet. Am. J. Phys. Anthropol. 2017, 162, 84–109. [Google Scholar] [CrossRef] [PubMed]
- Gouveri, E.; Marakomichelakis, G.; Diamantopoulos, E.J. Chapter 34—The Mediterranean diet and metabolic syndrome. In The Mediterranean Diet, 2nd ed.; Preedy, V., Watson, R., Eds.; Academic Press: London, UK, 2020; pp. 371–379. [Google Scholar]
- Panagiotakos, D.B.; Chrysohoou, C.; Pitsavos, C.; Stefanadis, C. Association between the prevalence of obesity and adherence to the Mediterranean diet: The ATTICA study. Nutrition 2006, 22, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Farajian, P.; Risvas, G.; Karasouli, K.; Pounis, G.D.; Kastorini, C.M.; Panagiotakos, D.B.; Zampelas, A. Very high childhood obesity prevalence and low adherence rates to the Mediterranean diet in Greek children: The GRECO study. Atherosclerosis 2011, 217, 525–530. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, M.L. Chapter 33—The Mediterranean Diet Versus a Low-Fat Diet, Cardiovascular Risk Factors, and Obesity. In The Mediterranean Diet, 2nd ed.; Preedy, V., Watson, R., Eds.; Academic Press: London, UK, 2020; pp. 357–365. [Google Scholar]
- Ntrigiou, V.; Ntrigios, I.; Rigopoulos, N.; Dimou, C.; Koutelidakis, A.E. Functional food consumption correlates with anthropometric characteristics and body composition in healthy adults. Curr. Top. Nutraceutical. Res. 2018, 16, 279–288. [Google Scholar]
- Dwyer, J.; Picciano, M.F.; Raiten, D.J. Collection of Food and Dietary Supplement Intake Data: What We Eat in America–NHANES. J. Nutr. 2003, 133, 590–600. [Google Scholar] [CrossRef] [Green Version]
- Panagiotakos, D.B.; Pitsavos, C.; Stefanadis, C. Dietary patterns: A Mediterranean diet score and its relation to clinical and biological markers of cardiovascular disease risk. Nutr. Metab. Cardiovasc. Dis. 2006, 16, 559–568. [Google Scholar] [CrossRef]
- World Health Organization. Obesity and Overweight Fact Sheet. Available online: https://www.who.int/dietphysicalactivity/media/en/gsfs_obesity.pdf (accessed on 1 March 2019).
- Andreoli, A.; Garaci, F.; Cafarelli, F.P.; Guglielmi, G. Body composition in clinical practice. Eur. J. Radiol. 2016, 85, 1461–1468. [Google Scholar] [CrossRef] [Green Version]
- Del Bo, C.; Bernardi, S.; Marino, M.; Porrini, M.; Tucci, M.; Guglielmetti, S.; Cherubini, A.; Carrieri, B.; Kirkup, B.; Kroon, P.; et al. Systematic Review on Polyphenol Intake and Health Outcomes: Is there Sufficient Evidence to Define a Health-Promoting Polyphenol-Rich Dietary Pattern? Nutrients 2019, 11, 1355. [Google Scholar] [CrossRef] [Green Version]
- Guasch-Ferré, M.; Merino, J.; Sun, Q.; Fitó, M.; Salas-Salvadó, J. Dietary Polyphenols, Mediterranean Diet, Prediabetes, and Type 2 Diabetes: A Narrative Review of the Evidence. Oxid. Mes. Cell Longev. 2017, 2017, 6723931. [Google Scholar] [CrossRef]
- Mendonça, R.D.; Carvalho, N.C.; Martin-Moreno, J.M.; Pimenta, A.M.; Lopes, A.C.S.; Gea, A.; Martinez-Gonzalez, M.A.; Bes-Rastrollo, M. Total polyphenol intake, polyphenol subtypes and incidence of cardiovascular disease: The SUN cohort study. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 69–78. [Google Scholar] [CrossRef]
- Amiot, M.J.; Riva, C.; Vinet, A. Effects of dietary polyphenols on metabolic syndrome features in humans: A systematic review. Obes. Rev. 2016, 17, 573–586. [Google Scholar] [CrossRef]
- Corte, C.D.; Mosca, A.; Vania, A.; Alterio, A.; Iasevoli, S.; Nobili, V. Good adherence to the Mediterranean diet reduces the risk for NASH and diabetes in pediatric patients with obesity: The results of an Italian Study. Nutrition 2017, 39–40, 8–14. [Google Scholar] [CrossRef]
- Lampropoulou, M.; Chaini, M.; Rigopoulos, N.; Evangeliou, A.; Papadopoulou-Legbelou, K.; Koutelidakis, A. Association between Serum Lipid Levels in Greek Children with Dyslipidemia and Mediterranean Diet Adherence, Dietary Habits, Lifestyle and Family Socioeconomic Factors. Nutrients 2020, 12, 1600. [Google Scholar] [CrossRef] [PubMed]
- Kontogianni, M.D.; Meslistas, L.; Yannakoulia, M.; Malagaris, I.; Panagiotakos, D.B.; Yiannakouris, N. Association between dietary patterns and indices of bone mass in a sample of Mediterranean women. Nutrition 2009, 25, 165–171. [Google Scholar] [CrossRef]
- Malmir, H.; Saneei, P.; Larijani, B.; Esmaillzadeh, A. Adherence to Mediterranean diet in relation to bone mineral density and risk of fracture: A systematic review and meta-analysis of observational studies. Eur. J. Nutr. 2018, 57, 2147–2160. [Google Scholar] [CrossRef]
- Papagianni, O.; Loukas, T.; Magkoutis, A.; Biagki, T.; Dimou, C.; Karantonis, C.; Koutelidakis, A. Postprandial Bioactivity of Spread Cheese, Enhanced with Mountain Tea and Orange Peel Extract, in Healthy Volunteers. A Pilot Study. Proceedings 2021, 70, 19. [Google Scholar] [CrossRef]
- Allgrove, J.E.; Davison, G. Chapter 16—Chocolate/Cocoa Polyphenols and Oxidative Stress. In Polyphenols: Mechanisms of Action in Human Health and Disease, 2nd ed.; Preedy, V., Watson, R., Zibadi, S., Eds.; Academic Press: London, UK, 2018; pp. 207–219. [Google Scholar]
- Bøhn, S.; Croft, K.; Burrows, S.; Puddey, I.; Mulder, T.; Fuchs, D.; Woodman, R.; Hodgson, J. Effects of black tea on body composition and metabolic outcomes related to cardiovascular disease risk: A randomized controlled trial. Food Funct. 2014, 5, 1613–1620. [Google Scholar] [CrossRef] [Green Version]
- Azzini, E.; Giacometti, J.; Russo, G.L. Antiobesity Effects of Anthocyanins in Preclinical and Clinical Studies. Oxid. Med. Cell Longev. 2017, 2017, 2740364. [Google Scholar] [CrossRef]
- Bonet, A.; Canas, J.; Ribot, J.; Palou, A. Carotenoids in Adipose Tissue Biology and Obesity. Carotenoids Nat. 2016, 79, 341–377. [Google Scholar]
Sample Characteristics | Participants’ Percent | |
---|---|---|
Age | 18–35 | 75.41% |
36–46 | 11.07% | |
47–57 | 9.84% | |
58–70 | 3.69% | |
Living Area | Athens | 14.49% |
Chalkida | 31.26% | |
Lemnos island | 54.32% |
Polyphenols’ Consumption and Med Diet Score | Participants’ Percent | |
---|---|---|
Polyphenol Consumption Per Day | <1000 mg (low) | 25.45% |
1000–2000 mg (moderate) | 40.63% | |
>2000 mg (high) | 33.93% | |
Adherence to the Mediterranean Diet (Med Diet Score) | (0–20) Low | 4.17% |
(21–35) Medium | 82.00% | |
(36–55) High | 14.00% |
Body Composition | Categorized Polyphenols Low/Moderate/High Consumption * | Med Diet Score Low/Moderate/High Adherence ** |
---|---|---|
Body Fat | - | - |
Muscle Mass | - | - |
Body Water | Low–High: p = 0.024 | - |
BMI | - | Low–Moderate: 0.021 High–Low: 0.017 |
BMR | - | Low–Moderate: 0.003 High–Low: 0.005 |
Bone Mass | - | - |
Body Weight | - | - |
Waist Circumference | - | Low–Moderate: 0.019 High–Low: 0.020 |
Hip Circumference | - | - |
Waist/Hip Ratio | Low–Moderate: p = 0.027 | Low–Moderate: 0.032 High–Low: 0.004 |
Med Diet Score | Low–Moderate: p = 0.016 | - |
Food Rich in Polyphenols/Body Composition | Body Fat | Muscle Mass | Body Water | BMI | BMR | Waist Circumference | Hip Circumference | Bone Mass |
---|---|---|---|---|---|---|---|---|
Red wine | - | - | - | 0.003 | - | - | 0.030 | - |
Tomato | 0.022 | - | - | - | - | - | - | - |
Sour cherry | 0.024 | - | - | 0.018 | - | - | - | - |
Strawberry | - | - | - | - | - | - | 0.011 | |
Carrot | - | - | - | - | - | 0.022 | 0.015 | - |
Red pepper | - | - | - | - | - | - | 0.020 | - |
Dark chocolate | - | - | - | - | - | 0.003 | - | - |
Cocoa powder | - | - | - | - | - | 0.022 | - | - |
Black tea | - | - | - | _ | - | - | 0.009 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kapolou, A.; Karantonis, H.C.; Rigopoulos, N.; Koutelidakis, A.E. Association of Mean Daily Polyphenols Intake with Mediterranean Diet Adherence and Anthropometric Indices in Healthy Greek Adults: A Retrospective Study. Appl. Sci. 2021, 11, 4664. https://doi.org/10.3390/app11104664
Kapolou A, Karantonis HC, Rigopoulos N, Koutelidakis AE. Association of Mean Daily Polyphenols Intake with Mediterranean Diet Adherence and Anthropometric Indices in Healthy Greek Adults: A Retrospective Study. Applied Sciences. 2021; 11(10):4664. https://doi.org/10.3390/app11104664
Chicago/Turabian StyleKapolou, Aikaterini, Haralabos C. Karantonis, Nikolaos Rigopoulos, and Antonios E. Koutelidakis. 2021. "Association of Mean Daily Polyphenols Intake with Mediterranean Diet Adherence and Anthropometric Indices in Healthy Greek Adults: A Retrospective Study" Applied Sciences 11, no. 10: 4664. https://doi.org/10.3390/app11104664
APA StyleKapolou, A., Karantonis, H. C., Rigopoulos, N., & Koutelidakis, A. E. (2021). Association of Mean Daily Polyphenols Intake with Mediterranean Diet Adherence and Anthropometric Indices in Healthy Greek Adults: A Retrospective Study. Applied Sciences, 11(10), 4664. https://doi.org/10.3390/app11104664