The Effects of Red Clover Seed Treatment with Cold Plasma and Electromagnetic Field on Germination and Seedling Growth Are Dependent on Seed Color
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Effects on Germination In Vitro
3.2. Effects on the Content of Phytohormones in Dry Seeds
3.3. Changes in the Early Growth of Red Clover Seedlings
3.4. Changes in Seedling Growth and Nodulation
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Attri, P.; Ishikawa, K.; Okumura, T.; Koga, K.; Shiratani, M. Plasma agriculture from laboratory to farm: A review. Processes 2020, 8, 1002. [Google Scholar] [CrossRef]
- Staric, P.; Vogel-Mikuš, K.; Mozetic, M.; Junkar, I. Effects of nonthermal plasma on morphology, genetics and physiology of seeds: A Review. Plants 2020, 9, 1736. [Google Scholar] [CrossRef]
- Holubová, L.; Kyzek, S.; Durovcová, I.; Fabová, J.; Horváthová, E.; Ševcovicová, A.; Gálová, E. Non-thermal plasma—a new green priming agent for plants? Int. J. Mol. Sci. 2020, 21, 9466. [Google Scholar] [CrossRef]
- Maffei, M.E. Magnetic field effects on plant growth, development and evolution. Front. Plant Sci. 2014, 5, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pietrusziewski, S.; Martinez, E. Magnetic field as a method of improving the quality of sowing material: A review. Int. Agrophys. 2015, 29, 377–389. [Google Scholar] [CrossRef]
- Kaur, S.; Vian, A.; Chandel, S.; Singh, H.P.; Batish, D.R.; Kohli, R.K. Sensitivity of plants to high frequency electromagnetic radiation: Cellular mechanisms and morphological changes. Rev. Environ. Sci. Biotechnol. 2021, 20, 55–74. [Google Scholar] [CrossRef]
- Azharonok, V.; Goncharik, S.V.; Filatova, I.I.; Shik, A.S.; Antonyuk, A.S. The effect of the high frequency electromagnetic treatment of the sowing material for legumes on their sowing quality and productivity. Surf. Eng. Appl. Electrochem. 2009, 45, 317–327. [Google Scholar] [CrossRef]
- Filatova, I.I.; Azharonok, V.V.; Goncharik, S.V.; Lyushkevich, V.A.; Zhukovsky, A.G.; Gadzhieva, G.I. Effect of RF plasma treatment on the germination and phytosanitary state of seeds. J. Appl. Spectrosc. 2014, 81, 250–256. [Google Scholar] [CrossRef]
- Stolarik, T.; Henselova, M.; Martinka, M.; Novak, O.; Zahoranova, A.; Cernak, M. Effect of low temperature plasma on the structure of seeds, growth and metabolism of endogenous phytohormones in pea (Pisum sativum L.). Plasma Chem. Plasma Proc. 2015, 35, 659–676. [Google Scholar] [CrossRef]
- Mildaziene, V.; Pauzaite, G.; Malakauskiene, A.; Zukiene, R.; Nauciene, Z.; Filatova, I.; Azharonok, V.; Lyushkevich, V. Response of perennial woody plants to seed treatment by electromagnetic field and low-temperature plasma. Bioelectromagnetics 2016, 37, 536–548. [Google Scholar] [CrossRef] [PubMed]
- Koga, K.; Thapanut, S.; Amano, T.; Seo, H.; Itagaki, N.; Hayashi, N.; Shiratani, M. Simple method of improving harvest by nonthermal air plasma irradiation of seeds of Arabidopsis thaliana (L.). Appl. Phys. Express 2016, 9, 016201. [Google Scholar] [CrossRef]
- Mildažienė, V.; Paužaitė, G.; Naučienė, Z.; Malakauskiene, A.; Žūkienė, R.; Januškaitienė, I.; Jakštas, V.; Ivanauskas, L.; Filatova, I.; Lyushkevich, V. Pre-sowing seed treatment with cold plasma and electromagnetic field increases secondary metabolite content in purple coneflower (Echinacea purpurea) leaves. Plasma Process. Polym. 2018, 14, 1700059. [Google Scholar] [CrossRef]
- Jiang, J.; Lu, Y.; Li, J.; Li, L.; He, X.; Shao, H.; Dong, S. Effect of cold plasma treatment on seed germination and growth of wheat. PLoS ONE 2014, 9, e97753. [Google Scholar] [CrossRef] [Green Version]
- De Groot, G.J.J.A.; Hundt, A.; Murphy, A.B.; Bange, M.P.; Mai-Prochnow, A. Cold plasma treatment for cotton seed germination improvement. Sci. Rep. 2018, 8, 14372. [Google Scholar] [CrossRef] [Green Version]
- Degutytė-Fomins, L.; Paužaitė, G.; Žukienė, R.; Mildažienė, V.; Koga, K.; Shiratani, M. Relationship between cold plasma treatment-induced changes in radish seed germination and phytohormone balance. Jpn. J. Appl. Phys. 2020, 59, SH1001. [Google Scholar] [CrossRef]
- Mildažienė, V.; Paužaitė, G.; Naučienė, Z.; Žūkienė, R.; Malakauskienė, A.; Norkevičienė, E.; Šlepetienė, A.; Stukonis, V.; Olšauskaitė, V.; Padarauskas, A.; et al. Effect of seed treatment with cold plasma and electromagnetic field on red clover germination, growth and content of major isoflavones. J. Phys. D Appl. Phys. 2020, 53, 264001. [Google Scholar] [CrossRef]
- Imbert, E. Ecological consequences and ontogeny of seed heteromorphism. Perspect. Plant Ecol. 2002, 5, 13–36. [Google Scholar] [CrossRef]
- Matilla, A.; Matilla, A.; Gallardo, M.; Puga-Hermida, M.I. Structural, physiological and molecular aspects of heterogeneity in seeds: A review. Seed Sci. Res. 2005, 15, 63–76. [Google Scholar] [CrossRef]
- Baskin, C.C.; Baskin, J.M. Seeds: Ecology, Biogeography, and, Evolution of Dormancy and Germination, 2nd ed.; Academic Press: Lexington, KY, USA, 2014; pp. 101–116. [Google Scholar]
- Finch-Savage, W.E.; Leubner-Metzger, G. Seed dormancy and the control of germination. New Phytol. 2006, 171, 501–523. [Google Scholar] [CrossRef] [PubMed]
- Smykal, P.; Vernoud, V.; Blair, M.W.; Soukup, A.; Thompson, R.D. The role of the testa during development and in establishment of dormancy of the legume seed. Front. Plant Sci. 2014, 5, 351. [Google Scholar]
- Cechová, M.; Válková, M.; Hradilová, I.; Soukup, A.; Janská, A.; Smýkal, P.; Bednář, P. Towards better understanding of pea seed dormancy using laser desorption/ionization mass spectrometry. Int. J. Mol. Sci. 2017, 18, 2196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hradilová, I.; Duchoslav, M.; Brus, J.; Pechanec, V.; Hýbl, M.; Kopecký, P.; Smržová, L.; Štefelová, N.; Vaclávek, T.; Michael, B.; et al. Variation in wild pea (Pisum sativum subsp. elatius) seed dormancy and its relationship to the environment and seed coat traits. Peer J. 2019, 7, e6263. [Google Scholar] [CrossRef] [Green Version]
- Appelhagen, I.; Thiedig, K.; Nordholt, N.; Schmidt, N.; Huep, G.; Sagasser, M.; Weisshaar, B. Update on transparent testa mutants from Arabidopsis thaliana: Characterisation of new alleles from an isogenic collection. Planta 2014, 240, 955. [Google Scholar] [CrossRef]
- Lepiniec, L.; Debeaujon, I.; Routaboul, J.-M.; Baudry, A.; Pourcel, L.; Nesi, N.; Caboche, M. Genetics and biochemistry of seed flavonoids. Ann. Rev. Plant Biochem. 2006, 57, 405–430. [Google Scholar] [CrossRef]
- Paužaitė, G.; Malakauskiene, A.; Naučienė, Z.; Žūkienė, R.; Filatova, I.; Lyushkevich, V.; Azarko, I.; Mildažienė, V. Changes in Norway spruce germination and growth induced by pre-sowing seed treatment with cold plasma and electromagnetic field: Short-term versus long-term effects. Plasma Process. Polym. 2018, 14, 1700068. [Google Scholar] [CrossRef]
- Koga, K.; Attri, P.; Kamataki, K.; Itakagi, N.; Shiratani, M.; Mildažienė, V. Impact of radish sprouts seeds coat color on the electron paramagnetic resonance signals after plasma treatment. Jpn. J. Appl. Phys. 2020, 59, SHHF01. [Google Scholar] [CrossRef]
- Attri, P.; Ishikawa, K.; Okumura, T.; Koga, K.; Shiratani, M.; Mildaziene, V. Impact of seed color and storage time on the radish seed germination and sprout growth in plasma agriculture. Sci. Rep. 2021, 11, 2539. [Google Scholar] [CrossRef]
- Bortnem, R.; Boe, A. Color index for red clover seed. Crop Sci. 2003, 43, 2279. [Google Scholar] [CrossRef]
- Velijevic, N.; Strbanovic, R.; Postic, D.; Stanisavljevic, R.; Djukanovic, L. Effects of seed coat colour on the seed quality and initial seedling growth of red clover cultivars (Trifolium pratense). J. Process. Energy Agric. 2017, 21, 174. [Google Scholar] [CrossRef] [Green Version]
- Atis, I.; Atak, M.; Can, E.; Mavi, K. Seed coat color effects on seed quality and salt tolerance of red clover (Trifolium pratense). Int. J. Agric. Biol. 2011, 13, 363–368. [Google Scholar]
- Mildažienė, V.; Ivankov, A.; Paužaitė, G.; Naučienė, Z.; Žūkienė, R.; Degutytė-Fomins, L.; Pukalskas, A.; Venskutonis, P.R.; Filatova, I.; Lyushkevich, V. Seed treatment with cold plasma and electromagnetic field induces changes in red clover root growth dynamics, flavonoid exudation, and activates nodulation. Plasma Process. Polym. 2020, 17, 2000160. [Google Scholar]
- Hunt, R.W.; Pointer, M. Measuring Colour, 4th ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2011. [Google Scholar]
- Ivankov, A.; Nauciene, Z.; Zukiene, R.; Degutyte-Fomins, L.; Malakauskiene, A.; Kraujalis, P.; Venskutonis, P.R.; Filatova, I.; Lyushkevich, V.; Mildaziene, V. Changes in growth and production of non-psychotropic cannabinoids induced by pre-sowing treatment of hemp seeds with cold plasma, vacuum and electromagnetic field. Appl. Sci. 2020, 10, 8519. [Google Scholar] [CrossRef]
- Richards, F.J. A flexible growth function for empirical use. J. Exp. Bot. 1959, 10, 290–300. [Google Scholar] [CrossRef]
- Hara, Y. Calculation of population parameters using Richards function and application of indices of growth and seed vigor to rice plants. Plant Prod. Sci. 1999, 2, 129–135. [Google Scholar] [CrossRef]
- Zukiene, R.; Nauciene, Z.; Januskaitiene, I.; Pauzaite, G.; Mildaziene, V.; Koga, K.; Shiratani, M. DBD plasma treatment induced changes in sunflower seed germination, phytohormone balance, and seedling growth. Appl. Phys. Express 2019, 12, 126003. [Google Scholar] [CrossRef]
- Nijdam, F.E. Kruisingen met Trifolium pratense L. Genetica 1937, 14, 161–278. [Google Scholar] [CrossRef] [Green Version]
- Gu, X.; Foley, M.E.; Horvath, D.P.; Anderson, J.V.; Feng, J.; Zhang, L.; Chen, Z. Association between seed dormancy and pericarp color is controlled by a pleiotropic gene that regulates abscisic acid and flavonoid synthesis in weedy red rice. Genetics 2011, 189, 1515–1524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oracz, K.; Karpinski, S. Phytohormones signaling pathways and ROS involvement in seed germination. Front. Plant Sci. 2016, 7, 864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wojtyla, Ł.; Lechowska, K.; Kubala, S.; Garnczarska, M. Different modes of hydrogen peroxide action during seed germination. Front. Plant Sci. 2016, 7, 66. [Google Scholar] [CrossRef] [Green Version]
- Waskow, A.; Howling, A.; Furno, I. Mechanisms of plasma-seed treatments as a potential seed processing technology. Front. Phys. 2021, 9, 617345. [Google Scholar] [CrossRef]
- Sarinont, T.; Amano, T.; Attri, P.; Koga, K.; Hayashi, N.; Shiratani, M. Effects of plasma irradiation using various feeding gases on growth of Raphanus sativus L. Arch. Biochem. Biophys. 2016, 605, 129–140. [Google Scholar] [CrossRef]
- Legris, M.; Ince, Y.Ç.; Fankhauser, C. Molecular mechanisms underlying phytochrome-controlled morphogenesis in plants. Nat. Commun. 2019, 10, 5219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heijde, M.; Ulm, R. UV-B photoreceptor-mediated signalling in plants. Trends Plant Sci. 2012, 17, 230–237. [Google Scholar] [CrossRef]
- Shu, K.; Liu, X.-D.; Xie, Q.; He, Z.-H. Two faces of one seed: Hormonal regulation of dormancy and germination. Mol. Plant 2016, 9, 34–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, L.; Wu, Q.; Ye, N.; Liu, R.; Shi, L.; Xu, W.; Zhang, J. Proanthocyanidins inhibit seed germination by maintaining a high level of abscisic acid in Arabidopsis thaliana F. J. Integr. Plant Biol. 2012, 54, 663. [Google Scholar] [CrossRef]
- Pérez-Pizá, M.C.; Cejas, E.; Prevosto, C.L.; Mancinelli, B.; Santa-Cruz, D.; Yannarelli, G.; Balestrasse, K. Enhancement of soybean nodulation by seed treatment with non–thermal plasmas. Sci. Rep. 2020, 10, 4917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bormashenko, E.; Grynyov, R.; Bormashenko, Y.; Drori, E. Cold Radio frequency Plasma Treatment Modifies Wettability and Germination Speed of Plant Seeds. Sci. Rep. 2012, 12, 741. [Google Scholar] [CrossRef] [PubMed]
- Mildažienė, V.; Aleknavičiūtė, V.; Žūkienė, R.; Paužaitė, G.; Naučienė, Z.; Filatova, I.; Lyushkevich, V.; Haimi, P.; Tamošiūnė, I.; Baniulis, D. Treatment of Common sunflower (Helianthus annus L.) seeds with radio-frequency electromagnetic field and cold plasma induces changes in seed phytohormone balance, seedling development and leaf protein expression. Sci. Rep. 2019, 9, 6437. [Google Scholar] [CrossRef]
- Suriyasak, S.; Hatanaka, K.; Tanaka, H.; Okumura, T.; Yamashita, D.; Attri, P.; Koga, K.; Shiratani, M.; Hamaoka, N.; Ishibashi, Y. Alterations of DNA Methylation Caused by Cold Plasma Treatment Restore Delayed Germination of Heat-Stressed Rice (Oryza sativa L.) Seeds. ACS Agric. Sci. Technol. 2021, 1, 5–10. [Google Scholar] [CrossRef]
- Zhang, J.J.; Jo, J.O.; Huynh, D.L.; Mongre, R.K.; Ghosh, M.; Singh, A.K.; Lee, S.B.; Mok, Y.S.; Hyuk, P.; Jeong, D.K. Growth-inducing effects of argon plasma on soybean sprouts via the regulation of demethylation levels of energy metabolism-related genes. Sci. Rep. 2017, 7, 41917. [Google Scholar] [CrossRef]
- Tamošiūnė, I.; Gelvonauskienė, D.; Haimi, P.; Mildažienė, V.; Koga, K.; Shiratani, M.; Baniulis, D. Cold plasma treatment of sunflower seeds modulates plant-associated microbiome and stimulates root and lateral organ growth. Front. Plant Sci. 2020, 11, 568924. [Google Scholar] [CrossRef] [PubMed]
- Iranbakhsh, A.; Oraghi Ardebili, Z.; Molaei, H.; Oraghi Ardebili, N.; Amini, M. Cold plasma up-regulated expressions of WRKY1 transcription factor and genes involved in biosynthesis of cannabinoids in hemp (Cannabis sativa L.). Plasma Chem. Plasma Proc. 2020, 40, 527–537. [Google Scholar] [CrossRef]
Seed Color | Germination Indices | Control | CP5 | CP7 | EMF10 | EMF15 |
---|---|---|---|---|---|---|
Yellow | Vi, % | 84.4 ± 7.3 | 88.9 ± 6.1 | 91.1 ± 2.9 | 92.2 ± 2.9 | 89.0 ± 1.1 |
Me, h | 44.4 ± 2.1 | 26.0 ± 1.5 * | 30.2 ± 1.3 * | 37.6 ± 0.9 * | 39.5 ± 0.6 * | |
Qu, h | 5.1 ± 1.0 | 3.5 ± 1.3 | 6.6 ± 0.4 | 6.3 ± 0.4 | 5.3 ± 0.5 | |
Brown | Vi, % | 90.0 ± 1.9 | 84.4 ± 4.0 | 90.0 ± 1.9 | 86.7 ± 3.3 | 88.9 ± 2.9 |
Me, h | 45.8 ± 2.0 | 35.9 ± 2.10 * | 34.1 ± 0.8 * | 44.6 ± 2.4 | 44.1 ± 1.7 | |
Qu, h | 6.9 ± 1.1 | 6,9 ± 0.2 | 7.5 ± 1.20 | 8.9 ± 0.8 | 8.5 ± 0.7 | |
Dark purple | Vi, % | 93.3 ± 0.0 | 91.1 ± 4.0 | 90.0 ± 1.9 | 87.8 ± 4.8 | 88.9 ± 6.7 |
Me, h | 43.8 ± 0.1 | 30.3 ± 3.9 * | 31.9 ± 1.1 * | 38.7 ± 0.8 * | 42.8 ± 1.6 | |
Qu, h | 6.3 ± 0.7 | 4.9 ± 1.6 | 8.5 ± 0.4 * | 7.5 ± 0.5 | 6.5 ± 0.9 |
Seed Color | Treatment | Phytohormone | |||||
---|---|---|---|---|---|---|---|
ABA | GA7 | IAA | IBA | Z | SA | ||
Yellow | Control | 0.24 ± 0.07 # | ND # | 19.1 ± 4.0 # | 14.0 ± 0.1 | 0.83 ± 0.01 | 76.2 ± 0.4 # |
CP5 | 0.54 ± 0.03 * | ND | 9.7 ± 1.9 * | 12.7 ± 1.9 | 0.51 ± 0.07 * | 61.8 ± 9.3 * | |
CP7 | 0.76 ± 0.09 * | ND | 15.7 ± 2.1 | 15.9 ± 0.2 * | 0.54 ± 0.02 * | 70.7 ± 1.6 * | |
EMF10 | 0.56 ± 0.02 * | 87.7 ± 3.3 * | 19.0 ± 3.0 | 12.9 ± 0.6 * | ND | 48.6 ± 1.1 * | |
EMF15 | 0.38 ± 0.01 * | 84.0 ± 2.0 * | 19.3 ± 3.7 | 11.3 ± 0.5 * | ND | 46.3 ± 1.3 * | |
Brown | Control | 0.71 ± 0.04 & | 363.9 ± 9.0 & | 8.2 ± 1.8 & | 15.2 ± 0.6 | 0.50 ± 0.30 | 66.3 ± 3.3 & |
CP5 | 0.81 ± 0.03 * | 187.5 ± 5.7 * | 10.5 ± 1.5 | 15.0 ± 0.6 | 0.08 ± 0.02 * | 69.3 ± 3.9 | |
CP7 | 0.73 ± 0.04 | 137.6 ± 4.8 * | 9.3 ± 4.4 | 12.7 ± 0.9 * | 0.60 ± 0.20 | 79.4 ± 7.4 * | |
EMF10 | 0.74 ± 0.01 | 188.8 ± 5.0 * | 8.6 ± 0.2 | 13.5 ± 0.6 * | ND | 67.6 ± 3.9 | |
EMF15 | 0.72 ± 0.02 | 219.4 ± 4.3 * | 8.3 ± 0.4 | 17.3 ± 0.6 | ND | 65.6 ± 4.8 | |
Dark purple | Control | 0.39 ± 0.10 &,# | 7.5 ± 0.0 &,# | 8.0 ± 1.0 & | 16.3 ± 0.9 & | 0.70 ± 0.07 & | 92.6 ± 5.3 &,# |
CP5 | 0.25 ± 0.06 | 105.7 ± 0.0 * | 6.6 ± 3.3 | 14.2 ± 0.4 * | 0.82 ± 0.07 | 72.2 ± 2.8 * | |
CP7 | 0.19 ± 0.04 * | ND | 6.1 ± 1.2 | 11.7 ± 2.4 | 0.71 ± 0.12 | 63.5 ± 12.3 * | |
EMF10 | 0.23 ± 0.02 * | 86.1 ± 2.7 * | 6.8 ± 1.3 | 12.8 ± 0.4 * | ND | 58.8 ± 1.5 * | |
EMF15 | 0.24 ± 0.03 * | 84.1 ± 2.1 * | 7.9 ± 1.2 | 16.5 ± 0.5 | ND | 54.9 ± 4.8 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivankov, A.; Zukiene, R.; Nauciene, Z.; Degutyte-Fomins, L.; Filatova, I.; Lyushkevich, V.; Mildaziene, V. The Effects of Red Clover Seed Treatment with Cold Plasma and Electromagnetic Field on Germination and Seedling Growth Are Dependent on Seed Color. Appl. Sci. 2021, 11, 4676. https://doi.org/10.3390/app11104676
Ivankov A, Zukiene R, Nauciene Z, Degutyte-Fomins L, Filatova I, Lyushkevich V, Mildaziene V. The Effects of Red Clover Seed Treatment with Cold Plasma and Electromagnetic Field on Germination and Seedling Growth Are Dependent on Seed Color. Applied Sciences. 2021; 11(10):4676. https://doi.org/10.3390/app11104676
Chicago/Turabian StyleIvankov, Anatolii, Rasa Zukiene, Zita Nauciene, Laima Degutyte-Fomins, Irina Filatova, Veronika Lyushkevich, and Vida Mildaziene. 2021. "The Effects of Red Clover Seed Treatment with Cold Plasma and Electromagnetic Field on Germination and Seedling Growth Are Dependent on Seed Color" Applied Sciences 11, no. 10: 4676. https://doi.org/10.3390/app11104676
APA StyleIvankov, A., Zukiene, R., Nauciene, Z., Degutyte-Fomins, L., Filatova, I., Lyushkevich, V., & Mildaziene, V. (2021). The Effects of Red Clover Seed Treatment with Cold Plasma and Electromagnetic Field on Germination and Seedling Growth Are Dependent on Seed Color. Applied Sciences, 11(10), 4676. https://doi.org/10.3390/app11104676