Antibacterial Activity of Moroccan Zantaz Honey and the Influence of Its Physicochemical Parameters Using Chemometric Tools
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Zantaz Honey Sampling and Mellissopalynology
2.3. Zantaz Honey Physicochemical Characterization
2.4. Determination of Polyphenol Composition
2.5. Antimicrobial Activity
2.6. Statistical Analysis
3. Results
3.1. Melissopalynology and Physicochemical Characterization
3.2. Antibacterial Activity
4. Discussion
Multivariate Analysis and Correlation between Zantaz Honey Composition and Antibacterial Activity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mandal, M.D.; Mandal, S. Honey: Its medicinal property and antibacterial activity. Asian Pac. J. Trop. Biomed. 2011, 1, 154–160. [Google Scholar] [CrossRef] [Green Version]
- Eteraf-Oskouei, T.; Najafi, M. Traditional and modern uses of natural honey in human diseases: A review. Iran. J. Basic Med. Sci. 2013, 16, 731–742. [Google Scholar] [PubMed]
- Dustmann, J.H. Antibacterial effect of honey. Apiacta 1979, 1, 7–11. [Google Scholar] [CrossRef]
- Cianciosi, D.; Yuliett, T.; Afrin, S.; Gasparrini, M.; Reboredo-rodriguez, P.; Manna, P.P.; Zhang, J.; Lamas, L.B.; Mart, S.; Toyos, P.A.; et al. Phenolic compounds in honey and their associated health benefits: A review. Molecules 2018, 23, 2322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aurongzeb, M.; Azim, K. Antimicrobial properties of natural honey: A review of literature. Pak. J. Biochem. Mol. Biol. 2011, 44, 118–124. [Google Scholar]
- Alvarez-Suarez, J.; Gasparrini, M.; Forbes-Hernández, T.; Mazzoni, L.; Giampieri, F. The composition and biological activity of honey: A focus on Manuka honey. Foods 2014, 3, 420–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Combarros-Fuertes, P.; Estevinho, L.M.; Dias, L.G.; Castro, J.M.; Tomás-Barberán, F.A.; Tornadijo, M.E.; Fresno-Baro, J.M. Bioactive components and antioxidant and antibacterial activities of different varieties of honey: A screening prior to clinical application. J. Agric. Food Chem. 2019, 67, 688–698. [Google Scholar] [CrossRef] [Green Version]
- Molan, P. The antibacterial activity of honey: 1. The nature of the antibacterial activity. Bee World 1992, 73, 5–28. [Google Scholar] [CrossRef]
- Brudzynski, K.; Abubaker, K.; Miotto, D. Unraveling a mechanism of honey antibacterial action: Polyphenol/H2O2-induced oxidative effect on bacterial cell growth and on DNA degradation. Food Chem. 2012, 133, 329–336. [Google Scholar] [CrossRef]
- Brudzynski, K.; Abubaker, K.; St-Martin, L.; Castle, A. Re-examining the role of hydrogen peroxide in bacteriostatic and bactericidal activities of honey. Front. Microbiol. 2011, 2, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Moussa, A.; Saad, A. The influence of botanical origin and physico-chemical parameters on the antifungal activity of Algerian honey. J. Plant Pathol. Microbiol. 2012, 3, 1–5. [Google Scholar] [CrossRef]
- Imtara, H.; Elamine, Y.; Lyoussi, B. Honey antibacterial effect boosting using Origanum vulgare L. essential oil. Evid. Based Complement. Altern. Med. 2018, 2018, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Laallam, H.; Boughediri, L.; Bissati, S.; Menasria, T.; Mouzaoui, M.S.; Hadjadj, S.; Hammoudi, R.; Chenchouni, H. Modeling the synergistic antibacterial effects of honey characteristics of different botanical origins from the Sahara Desert of Algeria. Front. Microbiol. 2015, 6, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Kwakman, P.H.S.; Zaat, S.A.J. Antibacterial components of honey. IUBMB Life 2012, 64, 48–55. [Google Scholar] [CrossRef]
- Elamine, Y.; Lyoussi, B.; Miguel, M.G.; Anjos, O.; Estevinho, L.; Alaiz, M.; Girón-Calle, J.; Martín, J.; Vioque, J. Physicochemical characteristics and antiproliferative and antioxidant activities of Moroccan Zantaz honey rich in methyl syringate. Food Chem. 2021, 339, 128098. [Google Scholar] [CrossRef]
- Louveaux, J.; Maurizio, A.; Vorwohl, G. Methods of melissopalynology. Bee World 1978, 5, 139–153. [Google Scholar] [CrossRef]
- Bogdanov, S.; Martin, P.; Lüllmann, C.; Borneck, R.; Flamini, C.C.; Morlot, M.; Heretier, J.; Vorwohl, G.; Russmann, H.; Persano-Oddo, L.; et al. Harmonised Methods of the International Honey Commission. 2009. Available online: https://www.ihc-platform.net/ihcmethods2009.pdf (accessed on 1 April 2021).
- Naab, O.A.; Tamame, M.A.; Caccavari, M.A. Palynological and physicochemical characteristics of three unifloral honey types from central Argentina. Span. J. Agric. Res. 2008, 6, 566–576. [Google Scholar] [CrossRef] [Green Version]
- Brudzynski, K.; Miotto, D. The relationship between the content of Maillard reaction-like products and bioactivity of Canadian honeys. Food Chem. 2011, 124, 869–874. [Google Scholar] [CrossRef]
- Salamanca, L.X.A.; Torres, D.M.C. Estudio Cromatográfico por HPLC-UV, Cuantificación de Fenoles, Flavonoides y Evaluación de la Capacidad Antioxidante en Miel de Abejas. Master’s Thesis, Universidad Distrital Francisco José de Caldas, Bogota, Columbia, 2017. [Google Scholar]
- Pérez-Victoria, I.; Martín, J.; Reyes, F. Combined LC/UV/MS and NMR strategies for the dereplication of marine natural products. Planta Med. 2016, 82, 857–871. [Google Scholar] [CrossRef] [Green Version]
- Dimitrijević, D. Antioxidant and antimicrobial activity of different extracts from leaves and roots of Jovibarba heuffelii (Schott.) A. Löve and D. Löve. J. Med. Plants Res. 2012, 6, 4804–4810. [Google Scholar] [CrossRef]
- Hafidh, R.R. Inhibition of growth of highly resistant bacterial and fungal pathogens by a natural product. Open Microbiol. J. 2011, 5, 96–106. [Google Scholar] [CrossRef]
- Codex Alimentarius. Codex Stan 2001, 12, 1982. [CrossRef]
- Council Directive 2001/110/EC of 20 December 2001 relating to honey. Off. J. Eur. Communities 2002, 10, 47–52.
- Terrab, A.; Diéz, M.J.; Heredia, F.J. Characterisation of Moroccan unifloral honeys by their physicochemical characteristics. Food Chem. 2002, 79, 373–379. [Google Scholar] [CrossRef]
- Anjos, O.; Campos, M.G.; Ruiz, P.C.; Antunes, P. Application of FTIR-ATR spectroscopy to the quantification of sugar in honey. Food Chem. 2015, 169, 218–223. [Google Scholar] [CrossRef]
- Belay, A.; Haki, G.D.; Birringer, M.; Borck, H.; Lee, Y.-C.; Cho, C.-W.; Kim, K.-T.; Bayissa, B.; Baye, K.; Melaku, S. Sugar profile and physicochemical properties of Ethiopian monofloral honey. Int. J. Food Prop. 2017, 20, 2855–2866. [Google Scholar] [CrossRef]
- Bartha, S.; Taut, I.; Goji, G.; Andravlad, I.; Dinulică, F. Heavy metal content in polyfloralhoney and potential health risk. A case study of Copșa Mică, Romania. Int. J. Environ. Res. Public Health 2020, 17, 1507. [Google Scholar] [CrossRef] [Green Version]
- Elamine, Y.; Lyoussi, B.; Anjos, O.; Estevinho, L.M.; Aazza, S.; Carlier, J.D.; Costa, M.C.; Miguel, M.G. Zantaz honey “monoflorality”: Chemometric applied to the routinely assessed parameters. LWT Food Sci. Technol. 2019, 106, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Tuberoso, C.I.G.; Bifulco, E.; Jerkovic, I.; Caboni, P.; Cabras, P.; Floris, I. Methyl syringate: A chemical marker of asphodel (Asphodelus microcarpus salzm. et viv.) monofloral honey. J. Agric. Food Chem. 2009, 57, 3895–3900. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Cichello, S. Manuka honey: An emerging natural food with medicinal use. Nat. Prod. Bioprospect. 2013, 3, 121–128. [Google Scholar] [CrossRef] [Green Version]
- Boukraa, L. Additive activity of royal jelly and honey against Pseudomonas aeruginosa. Altern. Med. Rev. 2008, 13, 330–333. [Google Scholar]
- Johnston, M.; McBride, M.; Dahiya, D.; Owusu-Apenten, R.; Nigam, P.S. Antibacterial activity of Manuka honey and its components: An overview. AIMS Microbiol. 2018, 4, 655–664. [Google Scholar] [CrossRef]
- Albaridi, N.A. Antibacterial potency of honey. Int. J. Microbiol. 2019, 2019, 1–10. [Google Scholar] [CrossRef]
- Brudzynski, K. Honey melanoidins: Emerging novel understanding on the mechanism of antioxidant and antibacterial action of honey. In Honey: Current Research and Clinical Applications; Nova Science Publishers, Inc.: New York, NY, USA, 2012; pp. 18–38. [Google Scholar]
- Henriques, A.F.; Jenkins, R.E.; Burton, N.F.; Cooper, R.A. The effect of manuka honey on the structure of Pseudomonas aeruginosa. Eur. J. Clin. Microbiol. Infect. Dis. 2011, 30, 167–171. [Google Scholar] [CrossRef] [Green Version]
- Kumar, K.S.; Bhowmik, D. Medicinal uses and health benefits of Honey: An overview. J. Chem. Pharm. Res. 2010, 2, 385–395. [Google Scholar]
- Kirkpatrick, G.; Nigam, P.; Owusu-Apenten, R. Total phenols, antioxidant capacity and antibacterial activity of Manuka honey chemical constituents. J. Adv. Biol. Biotechnol. 2017, 15, 1–7. [Google Scholar] [CrossRef] [Green Version]
Means ± SD | Min | Max | ||
---|---|---|---|---|
Pollen analysis (%) | Bupleurum spinosum | 62 ± 10 | 51 | 80 |
Cytisus sp. | 12 ± 16 | 0 | 38 | |
Populus sp. | 8 ± 5 | 1 | 19 | |
Others | 18 ± 13 | 3 | 41 | |
General physicochemical properties | pH | 4.05 ± 0.21 | 3.78 | 4.38 |
Water content (%) | 19.88 ± 0.85 | 18.40 | 21.13 | |
Free acidity (mEq/kg) | 18.41 ± 5.72 | 8.40 | 26.40 | |
Lactonic acidity (mEq/kg) | 11.30 ± 1.36 | 8.00 | 13.00 | |
Total acidity (mEq/kg) | 29.71 ± 6.66 | 18.40 | 38.40 | |
Ash content (%) | 0.19 ± 0.05 | 0.13 | 0.32 | |
Electrical conductivity (EC) (µs/cm) | 454.80 ± 85.50 | 351.66 | 652.33 | |
Diastase activity (Shad number) | 20.21 ± 4.86 | 12.38 | 29.52 | |
Melanoidins (a. u.) | 1.01 ± 0.28 | 0.40 | 1.45 | |
Color (mm Pfund) | 62.71 ± 18.98 | 25.98 | 96.42 | |
Sugars (g/100 g) | Fructose | 38.50 ± 2.37 | 34.71 | 41.83 |
Glucose | 23.25 ± 1.96 | 19.61 | 26.89 | |
Melibiose | 2.80 ± 0.92 | 1.44 | 4.31 | |
Turanose | 1.79 ± 0.20 | 1.29 | 2.04 | |
Maltose | 1.53 ± 0.47 | 0.95 | 2.45 | |
Arabinose | 1.60 ± 0.72 | 0.33 | 2.44 | |
Trehalose | 0.82 ± 0.29 | 0.50 | 1.50 | |
Xylose | 0.30 ± 0.03 | 0.25 | 0.36 | |
Sucrose | <0.2 | <0.2 | <0.2 | |
Minerals (mg/Kg) | K | 638.19 ± 206.29 | 429.15 | 1177.47 |
Ca | 154.78 ± 20.90 | 124.15 | 189.95 | |
Na | 57.70 ± 15.46 | 38.39 | 90.90 | |
Mg | 33.16 ± 9.55 | 24.25 | 52.80 | |
Fe | 14.22 ± 3.36 | 7.61 | 18.23 | |
Cu | 1.29 ± 0.36 | 0.89 | 1.95 | |
Mn | 0.85 ± 0.18 | 0.51 | 1.12 | |
Zn | 0.66 ± 0.42 | 0.26 | 1.72 |
E. coli (466) | P. aeruginosa | S. aureus | ||||
---|---|---|---|---|---|---|
Zantaz Honey Samples | MIC (mg/mL) | MBC (mg/mL) | MIC (mg/mL) | MBC (mg/mL) | MIC (mg/mL) | MBC (mg/mL) |
ZH1 | 125 | 125 | 125 | 125 | 125 | 125 |
ZH2 | 125 | 125 | 62.5 | 125 | 62.5 | 62.5 |
ZH3 | 125 | 250 | 125 | 125 | 125 | 125 |
ZH4 | 250 | 250 | 125 | 125 | 125 | 125 |
ZH5 | 250 | 250 | 125 | 250 | 125 | 125 |
ZH6 | 250 | 250 | 250 | 250 | 250 | 250 |
ZH7 | 125 | 125 | 62.5 | 62.5 | 62.5 | 62.5 |
ZH8 | 125 | 125 | 125 | 125 | 62.5 | 62.5 |
ZH9 | 125 | 250 | 62.5 | 62.5 | 62.5 | 62.5 |
ZH10 | 250 | 250 | 125 | 125 | 125 | 125 |
Mean | 175 | 200 | 118.75 | 137.5 | 112.5 | 112.5 |
SD | 61.2 | 61.2 | 51.9 | 61.2 | 54.5 | 54.5 |
Min | 125 | 125 | 62.5 | 62.5 | 62.5 | 62.5 |
Max | 250 | 250 | 250 | 250 | 250 | 250 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elamine, Y.; Imtara, H.; Miguel, M.G.; Anjos, O.; Estevinho, L.M.; Alaiz, M.; Girón-Calle, J.; Vioque, J.; Martín, J.; Lyoussi, B. Antibacterial Activity of Moroccan Zantaz Honey and the Influence of Its Physicochemical Parameters Using Chemometric Tools. Appl. Sci. 2021, 11, 4675. https://doi.org/10.3390/app11104675
Elamine Y, Imtara H, Miguel MG, Anjos O, Estevinho LM, Alaiz M, Girón-Calle J, Vioque J, Martín J, Lyoussi B. Antibacterial Activity of Moroccan Zantaz Honey and the Influence of Its Physicochemical Parameters Using Chemometric Tools. Applied Sciences. 2021; 11(10):4675. https://doi.org/10.3390/app11104675
Chicago/Turabian StyleElamine, Youssef, Hamada Imtara, Maria Graça Miguel, Ofélia Anjos, Letícia M. Estevinho, Manuel Alaiz, Julio Girón-Calle, Javier Vioque, Jesús Martín, and Badiâa Lyoussi. 2021. "Antibacterial Activity of Moroccan Zantaz Honey and the Influence of Its Physicochemical Parameters Using Chemometric Tools" Applied Sciences 11, no. 10: 4675. https://doi.org/10.3390/app11104675
APA StyleElamine, Y., Imtara, H., Miguel, M. G., Anjos, O., Estevinho, L. M., Alaiz, M., Girón-Calle, J., Vioque, J., Martín, J., & Lyoussi, B. (2021). Antibacterial Activity of Moroccan Zantaz Honey and the Influence of Its Physicochemical Parameters Using Chemometric Tools. Applied Sciences, 11(10), 4675. https://doi.org/10.3390/app11104675