Several Aspects of Application of Nanodiamonds as Reinforcements for Metal Matrix Composites
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Kuznetsov, V.L.; Aleksandrov, M.N.; Zagoruiko, I.V.; Chuvilin, A.L.; Moroz, E.M.; Kolomiichuk, V.N.; Likholobov, V.A.; Brylyakov, P.M.; Sakovitch, G.V. Study of Ultra Disperse Diamond Obtained Using Explosion Energy. Carbon 1991, 29, 665–668. [Google Scholar] [CrossRef]
- Basso, L.; Cazzanelli, M.; Orlandi, M.; Miotello, A. Nanodiamonds: Synthesis and Application in Sensing, Catalysis, and the Possible Connection with Some Processes Occurring in Space. Appl. Sci. 2020, 10, 4094. [Google Scholar] [CrossRef]
- Mochalin, V.N.; Shenderova, O.; Ho, D.; Gogotsi, Y. The properties and applications of nanodiamonds. Nat. Nanotechnol. 2012, 7, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Balakin, S.; Dennison, N.R.; Klemmed, B.; Spohn, J.; Cuniberti, G.; Römhildt, L.; Opitz, J. Immobilization of Detonation Nanodiamonds on Macroscopic Surfaces. Appl. Sci. 2019, 9, 1064. [Google Scholar] [CrossRef] [Green Version]
- Adorinni, S.; Cringoli, M.C.; Perathoner, S.; Fornasiero, P.; Marchesan, S. Green Approaches to Carbon Nanostructure-Based Biomaterials. Appl. Sci. 2021, 11, 2490. [Google Scholar] [CrossRef]
- Popov, V.A. Non-agglomerated nanodiamonds inside metal matrix. Fuller. Nanotub. Carbon Nanostruct. 2020, 28, 61–65. [Google Scholar] [CrossRef]
- Popov, V. The impact of the diamond reinforcing particle size on their interaction with the aluminum matrix of composites in the course of heating. Surf. Interface Anal. 2018, 50, 1106–1109. [Google Scholar] [CrossRef]
- Popov, V.A.; Burghammer, M.; Rosenthal, M.; Kotov, A. In situ synthesis of TiC nano-reinforcements in aluminum matrix composites during mechanical alloying. Compos. Part B Eng. 2018, 145, 57–61. [Google Scholar] [CrossRef]
- Tinwala, H.; Wairkar, S. Production, surface modification and biomedical applications of nanodiamonds: A sparkling tool for theranostics. Mater. Sci. Eng. C 2019, 97, 913–931. [Google Scholar] [CrossRef]
- Shvidchenko, A.V.; Eidelman, E.D.; Vul, A.Y.; Kuznetsov, N.M.; Stolyarova, D.Y.; Belousov, S.I.; Chvalun, S.N. Colloids of detonation nanodiamond particles for advanced applications. Adv. Colloid Interface Sci. 2019, 268, 64–81. [Google Scholar] [CrossRef]
- Mironov, E.; Koretz, A.; Petrov, E. Detonation synthesis ultradispersed diamond structural properties investigation by infrared absorption. Diam. Relat. Mater. 2002, 11, 872–876. [Google Scholar] [CrossRef]
- Volkov, D.S.; Proskurnin, M.A.; Korobov, M.V. Elemental analysis of nanodiamonds by inductively-coupled plasma atomic emission spectroscopy. Carbon 2014, 74, 1–13. [Google Scholar] [CrossRef]
- Krueger, A.; Boedeker, T. Deagglomeration and functionalisation of detonation nanodiamond with long alkyl chains. Diam. Relat. Mater. 2008, 17, 1367–1370. [Google Scholar] [CrossRef]
- Aleksenskiy, A.E.; Eydelman, E.D.; Vul, A.Y. Deagglomeration of Detonation Nanodiamonds. Nanosci. Nanotechnol. Lett. 2011, 3, 68–74. [Google Scholar] [CrossRef]
- Shvidchenko, A.V.; Dideikin, A.T.; Zhukov, A.N. Counterion condensation in hydrosols of single-crystalline detonation nanodiamond particles obtained by air annealing of their agglomerates. Colloid J. 2017, 79, 567–569. [Google Scholar] [CrossRef]
- Kuznetsov, V.L.; Chuvilin, A.L.; Butenko, Y.V.; Mal’kov, I.Y.; Titov, V.M. Onion-like carbon from ultra-disperse diamond. Chem. Phys. Lett. 1994, 222, 343–348. [Google Scholar] [CrossRef]
- Mykhaylyk, O.O.; Solonin, Y.M.; Batchelder, D.N.; Brydson, R. Transformation of nanodiamond into carbon onions: A comparative study by high-resolution transmission electron microscopy, electron energy-loss spectroscopy, x-ray diffraction, small-angle x-ray scattering, and ultraviolet Raman spectroscopy. J. Appl. Phys. 2005, 97, 074302. [Google Scholar] [CrossRef]
- Kuznetsov, V.; Moseenkov, S.; Ischenko, A.; Romanenko, A.; Buryakov, T.; Anikeeva, O.; Maksimenko, S.; Kuzhir, P.; Bychanok, D.; Gusinski, A.; et al. Controllable electromagnetic response of onion-like carbon based materials. Phys. Status Solidi B 2008, 245, 2051–2054. [Google Scholar] [CrossRef]
- Popov, V.A.; Egorov, A.V.; Savilov, S.V.; Lunin, V.V.; Kirichenko, A.N.; Denisov, V.N.; Blank, V.D.; Vyaselev, O.M.; Sagalova, T.B. Features of the Transformation of Detonation Nanodiamonds into Onion-Like Carbon Nanoparticles. J. Surf. Investig. X-ray Synchrotron Neutron Tech. 2013, 7, 1034–1043. [Google Scholar] [CrossRef]
- Liang, Y.; Meinhardt, T.; Jarre, G.; Ozawa, M.; Krueger, A. Deagglomeration and surface modification of thermally annealed nanoscale diamond. J. Colloid Interface Sci. 2011, 354, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Petit, T.; Arnault, J.-C.; Girard, H.A.; Sennour, M.; Bergonzo, P. Early stages of surface graphitization on nanodiamond probed by x-ray photoelectron spectroscopy. Phys. Rev. B 2011, 84, 233407. [Google Scholar] [CrossRef]
- Qiao, Z.; Li, J.; Zhao, N.; Shi, C.; Nash, P. Graphitization and microstructure transformation of nanodiamond to onion-like carbon. Scr. Mater. 2006, 54, 225–229. [Google Scholar] [CrossRef]
- Butenko, Y.V.; Kuznetsov, V.L.; Chuvilin, A.L.; Kolomiichuk, V.N.; Stankus, S.V.; Khairulin, R.A.; Segall, B. Kinetics of the graphitization of dispersed diamonds at “low” temperatures. J. Appl. Phys. 2000, 88, 4380. [Google Scholar] [CrossRef]
- Khalid, F.A.; Beffort, O.; Klotz, U.E.; Gasser, P. Microstructure and interfacial characteristics of aluminium–diamond composite materials. Diam. Relat. Mater. 2004, 13, 393–400. [Google Scholar] [CrossRef]
- Popov, V.A.; Shelekhov, E.V.; Vershinina, E.V. Influence of Reinforcing Nonagglomerated Nanodiamond Particles on Metal Matrix Nanocomposite Structure Stability in the Course of Heating. Eur. J. Inorg. Chem. 2016, 2016, 2122–2124. [Google Scholar] [CrossRef]
- Popov, V. X-ray micro-absorption enhancement for non-agglomerated nanodiamonds in mechanically alloyed aluminium matrix composites. Phys. Status Solidi A 2015, 212, 2722–2726. [Google Scholar] [CrossRef]
- Benjamin, J.S.; Volin, T.E. The Mechanism of mechanical alloying. Met. Trans. 1974, 5, 1929–1934. [Google Scholar] [CrossRef]
- Ruiz, M.M.; Olvera, J.N.R.; Davila, R.M.; Reyes, L.G.; Febles, V.G.; Martinez, J.G.; Arceo, L.G.D.B. Synthesis and Characterization of Mechanically Alloyed, Nanostructured Cubic MoW Carbide. Appl. Sci. 2020, 10, 9114. [Google Scholar] [CrossRef]
- Nunes, D.; Livramento, V.; Mardolcar, U.V. Tungsten-nanodiamonds composite powder produced by ball milling. J. Nucl. Mater. 2012, 426, 115–119. [Google Scholar] [CrossRef] [Green Version]
- Fedorov, V.B.; Shorshorov, M.K.; Khakimova, D.K. Carbon and Its Interaction with Metals; Metallurgy: Moscow, Russia, 1978. [Google Scholar]
- Etter, T.; Schulz, P.; Weber, M.; Metz, J.; Uggowitzer, P.J. Aluminium carbide formation in interpenetrating graphite/aluminium composites. Mater. Sci. Eng. A 2007, 448, 1–6. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popov, V. Several Aspects of Application of Nanodiamonds as Reinforcements for Metal Matrix Composites. Appl. Sci. 2021, 11, 4695. https://doi.org/10.3390/app11104695
Popov V. Several Aspects of Application of Nanodiamonds as Reinforcements for Metal Matrix Composites. Applied Sciences. 2021; 11(10):4695. https://doi.org/10.3390/app11104695
Chicago/Turabian StylePopov, Vladimir. 2021. "Several Aspects of Application of Nanodiamonds as Reinforcements for Metal Matrix Composites" Applied Sciences 11, no. 10: 4695. https://doi.org/10.3390/app11104695
APA StylePopov, V. (2021). Several Aspects of Application of Nanodiamonds as Reinforcements for Metal Matrix Composites. Applied Sciences, 11(10), 4695. https://doi.org/10.3390/app11104695