A Combined Vermifiltration-Hydroponic System for Swine Wastewater Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Wastewater
2.2. System Setup
2.3. Water Physical and Chemical Analysis
2.4. Coliform Bacteria
2.5. Hydroponic Growth Monitoring
3. Results and Discussion
3.1. Electrical Conductivity and pH
3.2. Biochemical Oxygen Demand (BOD5), Nitrogen, and Phosphorus
3.2.1. Biochemical Oxygen Demand
3.2.2. Nitrogen
3.2.3. Phosphorus
3.3. Coliform Bacteria
3.4. Behavior of the Hydroponically Growing Crops
3.5. System Limitations and Future Improvements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Food and Agricultural Organization. FAOSTAT. Available online: http://www.fao.org/faostat/en/#home (accessed on 9 April 2021).
- INE Instituto Nacional de Estatística—Statistics Portugal. Available online: https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_main (accessed on 9 April 2021).
- Backus, G.; Van Wagenberg, C.; Verdoes, N. Environmental impact of pig meat production. Meat Sci. 1998, 49, S65–S72. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, X.; Zhou, Z. Impacts of Small-Scale Industrialized Swine Farming on Local Soil, Water and Crop Qualities in a Hilly Red Soil Region of Subtropical China. Int. J. Environ. Res. Public Health 2017, 14, 1524. [Google Scholar] [CrossRef] [Green Version]
- Choudhary, M. Review of the Use of Swine Manure in Crop Production: Effects on Yield and Composition and on Soil and Water Quality. Waste Manag. Res. 1996, 14, 581–595. [Google Scholar] [CrossRef]
- Chelme-Ayala, P.; El-Din, M.G.; Smith, R.; Code, K.R.; Leonard, J. Advanced treatment of liquid swine manure using physico-chemical treatment. J. Hazard. Mater. 2011, 186, 1632–1638. [Google Scholar] [CrossRef]
- Zublena, J.P.; Barker, J.C. Nutrient Assessment and Distribution of Animal Manure. Better Crop. 1992, Summer, 28–31. [Google Scholar]
- Jaramillo, M.F.; Restrepo, I. Wastewater Reuse in Agriculture: A Review about Its Limitations and Benefits. Sustainability 2017, 9, 1734. [Google Scholar] [CrossRef] [Green Version]
- FSA. Environmental Alternative Systems for Piggery Effluent Treatment; FSA: Queensland, Australia, 2000. [Google Scholar]
- Szögi, A.A.; Vanotti, M.B.; Rice, J.M.; Humenik, F.J.; Hunt, P.G. Nitrification options for pig wastewater treatment. N. Z. J. Agric. Res. 2004, 47, 439–448. [Google Scholar] [CrossRef]
- De La Mora-Orozco, C.; González-Acuña, I.J.; Saucedo-Terán, R.A.; Flores-López, H.E.; Rubio-Arias, H.O.; Ochoa-Rivero, J.M. Removing Organic Matter and Nutrients from Pig Farm Wastewater with a Constructed Wetland System. Int. J. Environ. Res. Public Health 2018, 15, 1031. [Google Scholar] [CrossRef] [Green Version]
- Garg, V.K.; Yadav, Y.K.; Sheoran, A.; Chand, S.; Kaushik, P. Livestock excreta management through vermicomposting using an epigeic earthworm Eisenia foetida. Environmentalist 2006, 26, 269–276. [Google Scholar] [CrossRef]
- Li, Y.; Robin, P.; Cluzeau, D.; Bouche, M.; Qiu, J.; Laplanche, A.; Hassouna, M.; Morand, P.; Dappelo, C.; Callarec, J. Vermifiltration as a stage in reuse of swine wastewater: Monitoring methodology on an experimental farm. Ecol. Eng. 2008, 32, 301–309. [Google Scholar] [CrossRef]
- Singh, R.; Bhunia, P.; Dash, R.R. A mechanistic review on vermifiltration of wastewater: Design, operation and performance. J. Environ. Manag. 2017, 197, 656–672. [Google Scholar] [CrossRef]
- Samal, K.; Dash, R.R.; Bhunia, P. Treatment of wastewater by vermifiltration integrated with macrophyte filter: A review. J. Environ. Chem. Eng. 2017, 5, 2274–2289. [Google Scholar] [CrossRef]
- Arora, S.; Rajpal, A.; Bhargava, R.; Pruthi, V.; Bhatia, A.; Kazmi, A. Antibacterial and enzymatic activity of microbial community during wastewater treatment by pilot scale vermifiltration system. Bioresour. Technol. 2014, 166, 132–141. [Google Scholar] [CrossRef]
- Gupta, R.; Garg, V. Stabilization of primary sewage sludge during vermicomposting. J. Hazard. Mater. 2008, 153, 1023–1030. [Google Scholar] [CrossRef]
- Yadav, K.D.; Tare, V.; Ahammed, M.M. Vermicomposting of source-separated human faeces for nutrient recycling. Waste Manag. 2010, 30, 50–56. [Google Scholar] [CrossRef]
- Sinha, R.K.; Bharambe, G.; Bapat, P. Removal of high BOD and COD loadings of primary liquid waste products from dairy industry by vermi-filtration technology using earthworms. Indian J. Environ. Prot. 2007, 27, 486–501. [Google Scholar]
- Lourenço, N.; Nunes, L. Optimization of a vermifiltration process for treating urban wastewater. Ecol. Eng. 2017, 100, 138–146. [Google Scholar] [CrossRef]
- Lourenço, N.; Nunes, L.M. Is filter packing important in a small-scale vermifiltration process of urban wastewater? Int. J. Environ. Sci. Technol. 2017, 14, 2411–2422. [Google Scholar] [CrossRef]
- Rajpal, A.; Arora, S.; Bhatia, A.; Kumar, T.; Bhargava, R.; Chopra, A.; Kazmi, A. Co-treatment of organic fraction of municipal solid waste (OFMSW) and sewage by vermireactor. Ecol. Eng. 2014, 73, 154–161. [Google Scholar] [CrossRef]
- Wang, L.; Luo, X.; Zhang, Y.; Chao, J.; Gao, Y.; Zhang, J.; Zheng, Z. Community analysis of ammonia-oxidizing Betaproteobacteria at different seasons in microbial-earthworm ecofilters. Ecol. Eng. 2013, 51, 1–9. [Google Scholar] [CrossRef]
- Huang, K.; Xia, H.; Cui, G.; Li, F. Effects of earthworms on nitrification and ammonia oxidizers in vermicomposting systems for recycling of fruit and vegetable wastes. Sci. Total Environ. 2017, 578, 337–345. [Google Scholar] [CrossRef] [Green Version]
- Castillo, J.M.; Romero, E.; Nogales, R. Dynamics of microbial communities related to biochemical parameters during vermicomposting and maturation of agroindustrial lignocellulose wastes. Bioresour. Technol. 2013, 146, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, P.H.; Daims, H.; Lemmer, H. FISH Handbook for Biological Wastewater Treatment—Identification and Quantification of Microorganisms in Activated Sludge and Biofilms by FISH; IWA Publishing: London, UK; New York, NY, USA, 2009. [Google Scholar]
- Andleeb, S.; Ejaz, M.; Awan, U.A.; Ali, S.; Kiyani, A.; Shafique, I.; Zafar, A. Short Communication—In vitro screening of mucus and solvent extracts of Eisenia foetida against human bacterial and fungal pathogens. Pak. J. Pharm. Sci. 2016, 29, 969–977. [Google Scholar] [PubMed]
- Edwards, C.A.; Fletcher, K. Interactions between earthworms and microorganisms in organic-matter breakdown. Agric. Ecosyst. Environ. 1988, 24, 235–247. [Google Scholar] [CrossRef]
- Wang, N.; Nie, E.; Luo, X.; Yang, X.; Liu, Q.; Zheng, Z. Study of nitrogen removal performance in pilot-scale multi-stage vermi-biofilter: Operating conditions impacts and nitrogen speciation transformation. Environ. Earth Sci. 2015, 74, 3815–3824. [Google Scholar] [CrossRef] [Green Version]
- Suthar, S. Vermicomposting of vegetable-market solid waste using Eisenia fetida: Impact of bulking material on earthworm growth and decomposition rate. Ecol. Eng. 2009, 35, 914–920. [Google Scholar] [CrossRef]
- Garg, P.; Gupta, A.; Satya, S. Vermicomposting of different types of waste using Eisenia foetida: A comparative study. Bioresour. Technol. 2006, 97, 391–395. [Google Scholar] [CrossRef]
- Bawiec, A. Efficiency of nitrogen and phosphorus compounds removal in hydroponic wastewater treatment plant. Environ. Technol. 2018, 40, 2062–2072. [Google Scholar] [CrossRef]
- Jin, E.; Cao, L.; Xiang, S.; Zhou, W.; Ruan, R.; Liu, Y. Feasibility of using pretreated swine wastewater for production of water spinach (Ipomoea aquatic Forsk.) in a hydroponic system. Agric. Water Manag. 2020, 228, 105856. [Google Scholar] [CrossRef]
- Mavrogianopoulos, G.; Vogli, V.; Kyritsis, S. Use of wastewater as a nutrient solution in a closed gravel hydroponic culture of giant reed (Arundo donax). Bioresour. Technol. 2002, 82, 103–107. [Google Scholar] [CrossRef]
- Kumar, C.; Ghosh, A.K. Fabrication of a vermifiltration unit for wastewater recycling and performance of vermifiltered water (vermiaqua) on onion (Allium cepa). Int. J. Recycl. Org. Waste Agric. 2019, 8, 405–415. [Google Scholar] [CrossRef] [Green Version]
- Pereira, L.M.G.; Vieira, J.S.; Aires, L.M.I. Vermifiltração como meio de depuração de águas residuais de explorações suinícolas. In Proceedings of the SGA’19: Sustentabilidade na Gestão Ambiental. Inovação e Desafios para os Países de Língua Oficial Portuguesa. Centro de Congressos do Técnico, Fundec/IST, Lisboa, Portugal, 4–5 June 2019; pp. 101–108. [Google Scholar]
- Guzyte, G.; Sujetoviene, G.; Zaltauskaite, J. Effects of salinity on Earthworm (Eisenia Fetida). In Proceedings of the 8th International Conference on Environmental Engineering (ICEE 2011), Vilnius, Lithuania, 19–20 May 2011. [Google Scholar]
- Sinha, R.K.; Bharambe, G.; Chaudhari, U. Sewage treatment by vermifiltration with synchronous treatment of sludge by earthworms: A low-cost sustainable technology over conventional systems with potential for decentralization. Environmentalist 2008, 28, 409–420. [Google Scholar] [CrossRef] [Green Version]
- ISO. Water Quality—Determination of Biochemical Oxygen Demand after n Days (BODn)—Part 1: Dilution and Seeding Method with Allylthiourea (ISO Standard 5815-1:2019); ISO: Geneva, Switzerland, 2019. [Google Scholar]
- United States Environmental Protection Agency. Method 352.1: Nitrogen, Nitrate (Colorimetric, Brucine) by Spectrophotometer; EPA: Washington, DC, USA, 1971.
- APHA/AWWA/WEF. Standard Methods for the Examination of Water and Wastewater, 21st ed.; APHA-AWWA-WEF: Washington, DC, USA, 2005; ISBN 0875532357. [Google Scholar]
- ISO. Water Quality—Determination of Ammonium—Part 1: Manual Spectrometric Method (ISO Standard 7150-1:1984); ISO: Geneva, Switzerland, 1984. [Google Scholar]
- Millipore. 81938 Coliform ChromoSelect Agar Datasheet; Millipore: Darmstadt, Germany, 2018. [Google Scholar]
- Singh, H.; Dunn, B. Electrical Conductivity and pH Guide for Hydroponics; Oklahoma State University: Stillwater, OK, USA, 2016. [Google Scholar]
- De Lira, R.M.; Da Silva, G.F.; Dos Santos, A.N.; Rolim, M.M. Production, water consumption and nutrient content of Chinese cabbage grown hydroponically in brackish water. Rev. Ciênc. Agron. 2015, 46, 497–505. [Google Scholar] [CrossRef] [Green Version]
- Rahimi, G.; Karimi, F. The prolonged effect of salinity on growth and/or survival of earthworm Eisenia fetida. Int. J. Environ. Waste Manag. 2016, 18, 58–67. [Google Scholar] [CrossRef]
- Hughes, R.J.; Nair, J.; Ho, G. The toxicity of ammonia/ammonium to the vermifiltration wastewater treatment process. Water Sci. Technol. 2008, 58, 1215–1220. [Google Scholar] [CrossRef] [PubMed]
- Le, T.T.H.; Fettig, J.; Meon, G. Kinetics and simulation of nitrification at various pH values of a polluted river in the tropics. Ecohydrol. Hydrobiol. 2019, 19, 54–65. [Google Scholar] [CrossRef]
- Ministério do Ambiente. Decreto-Lei no 236/98, de 1 de Agosto; Ministério do Ambiente: Lisboa, Portugal, 1998.
- Ministério do Ambiente. Decreto-Lei no 152/97, de 19 de Junho; Ministério do Ambiente: Lisboa, Portugal, 1997.
- Masclaux-Daubresse, C.; Daniel-Vedele, F.; Dechorgnat, J.; Chardon, F.; Gaufichon, L.; Suzuki, A. Nitrogen uptake, assimilation and remobilization in plants: Challenges for sustainable and productive agriculture. Ann. Bot. 2010, 105, 1141–1157. [Google Scholar] [CrossRef] [Green Version]
- Arora, S.; Kazmi, A. The effect of seasonal temperature on pathogen removal efficacy of vermifilter for wastewater treatment. Water Res. 2015, 74, 88–99. [Google Scholar] [CrossRef]
- Marulanda, C.; Izquierdo, J. Popular Hydroponic Gardens; FAO Regional Office for Latin America and the Caribbean: Santiago, Chile, 1993. [Google Scholar]
Parameter | Value |
---|---|
TDS | 3100 mg/L |
TSS | 1900 mg/L |
EC | 0.9000 S/m |
pH | 8.00 |
COD | 1997 mgO2/L |
BOD5 | 149 mgO2/L 1 |
NH3-N | 574 mg/L |
NO2-N | 0.034 mg/L |
NO3-N | 1.50 mg/L |
TP | 159 mg/L |
PO4-P | 34.0 mg/L |
Time (Days) | EC (S/m) | pH | ||||
---|---|---|---|---|---|---|
VF Feed | VF Effluent/ HP Feed | HP Effluent | VF Feed | VF Effluent/ HP Feed | HP Effluent | |
21 | 0.1610 | 0.3050 | 0.2928 | 6.72 | 7.34 | 7.65 |
28 | 0.2237 | 0.2413 | 0.2776 | 7.38 | 7.60 | 7.77 |
35 | 0.2475 | 0.2517 | 0.2989 | 7.02 | 7.61 | 7.77 |
42 | 0.2901 | 0.2940 | 0.2642 | 6.52 | 7.25 | 7.69 |
49 | 0.1591 | 0.1635 | 0.1605 | 6.87 | 7.71 | 7.71 |
Feed | Effluent | RC (%) | p-Value | |
---|---|---|---|---|
BOD5 (mgO2/L) | 35.1 (±0.3) | 5.8 (±0.3) | –83 (±2) | <0.001 |
NH3-N (mgN/L) | 8.9 (±0.5) | 0.075 (±0.004) | –99 (±7) | <0.001 |
NO2-N (mgN/L) | 2.19 (±0.01) | 0.0307 (±0.0002) | –98.6 (±0.4) | <0.001 |
NO3-N (mgN/L) | 173 (±1) | 192 (±1) | +11.0 (±0.8) | <0.001 |
Feed | Effluent | RC (%) | p-Value | |
---|---|---|---|---|
BOD5 (mgO2/L) | 5.9 (±0.7) | 2.17 (±0.08) | –63 (±15) | <0.001 |
NH3-N (mgN/L) | 0.075 (±0.004) | <LOQ | –100 | - |
NO2-N (mgN/L) | 0.0329 (±0.0013) | 0.0112 (±0.0012) | –66 (±6) | <0.001 |
NO3-N (mgN/L) | 208 (±13) | 153 (±1) | –27 (±3) | <0.001 |
TP (mgP/L) | 39.2 (±0.9) | 20.9 (±0.4) | –47 (±3) | <0.001 |
PO4-P (mgP/L) | 33.2 (±0.3) | 18.5 (±0.3) | –44 (±1) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ispolnov, K.; Aires, L.M.I.; Lourenço, N.D.; Vieira, J.S. A Combined Vermifiltration-Hydroponic System for Swine Wastewater Treatment. Appl. Sci. 2021, 11, 5064. https://doi.org/10.3390/app11115064
Ispolnov K, Aires LMI, Lourenço ND, Vieira JS. A Combined Vermifiltration-Hydroponic System for Swine Wastewater Treatment. Applied Sciences. 2021; 11(11):5064. https://doi.org/10.3390/app11115064
Chicago/Turabian StyleIspolnov, Kirill, Luis M. I. Aires, Nídia D. Lourenço, and Judite S. Vieira. 2021. "A Combined Vermifiltration-Hydroponic System for Swine Wastewater Treatment" Applied Sciences 11, no. 11: 5064. https://doi.org/10.3390/app11115064
APA StyleIspolnov, K., Aires, L. M. I., Lourenço, N. D., & Vieira, J. S. (2021). A Combined Vermifiltration-Hydroponic System for Swine Wastewater Treatment. Applied Sciences, 11(11), 5064. https://doi.org/10.3390/app11115064