Removal of Organic UV Filters Using Enzymes in Spent Mushroom Composts from Fungicultures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Wastewater Sampling and Spent Mushroom Compost
2.3. Analysis of Remaining UV Filters in Experimental Samples
2.4. Batch Experiments
2.5. GC-MS Analysis of Intermediates of Biodegradation and Biotransformation
2.6. Adsorption Experiments
2.7. Bioreactor Experiments
3. Results
3.1. Performances of UV Filter Removal Using Enzyme Extracts of SMCs
3.2. The Intermediate Products of Removal of EHMC, EHS and HMS
3.3. Determination of UV Filter Adsorption by SMCs
3.4. Comparison of UV Filter Removal in RO Water and Effluent Using SMCs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Sabzevari, N.; Qiblawi, S.; Norton, S.A.; Fivenson, D. Sunscreens: UV filters to protect us: Part 1: Changing regulations and choices for optimal sun protection. Int. J. Womens Dermatol. 2021, 7, 28–44. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Law, J.C.; Zhao, Y.; Shi, H.; Zhang, Y.; Leung, K.S. Fate of UV filter Ethylhexyl methoxycinnamate in rat model and human urine: Metabolism, exposure and demographic associations. Sci. Total Environ. 2019, 686, 729–736. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Lu, G.; Yan, Z.; Liu, J.; Dong, H.; Bao, X.; Zhang, X.; Sun, Y. Residues, bioaccumulation, and trophic transfer of pharmaceuticals and personal care products in highly urbanized rivers affected by water diversion. J. Hazard Mater. 2020, 391, 122245. [Google Scholar] [CrossRef]
- Ekpeghere, K.I.; Kim, U.J.; O, S.H.; Kim, H.Y.; Oh, J.E. Distribution and seasonal occurrence of UV filters in rivers and wastewater treatment plants in Korea. Sci. Total Environ. 2016, 542, 121–128. [Google Scholar] [CrossRef] [PubMed]
- da Silva, C.P.; Emídio, E.S.; de Marchi, M.R. The occurrence of UV filters in natural and drinking water in São Paulo State (Brazil). Environ. Sci. Pollut. Res. Int. 2015, 22, 19706–19715. [Google Scholar] [CrossRef] [PubMed]
- Kameda, Y.; Kimura, K.; Miyazaki, M. Occurrence and profiles of organic sun-blocking agents in surface waters and sediments in Japanese rivers and lakes. Environ. Pollut. 2011, 159, 1570–1576. [Google Scholar] [CrossRef] [PubMed]
- Allinson, M.; Kameda, Y.; Kimura, K.; Allinson, G. Occurrence and assessment of the risk of ultraviolet filters and light stabilizers in Victorian estuaries. Environ. Sci. Pollut. Res. Int. 2018, 25, 12022–12033. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Hain, E.; Timm, A.; Tarnowski, M.; Blaney, L. Occurrence of antibiotics, estrogenic hormones, and UV-filters in water, sediment, and oyster tissue from the Chesapeake Bay. Sci. Total Environ. 2019, 650, 3101–3109. [Google Scholar] [CrossRef]
- Krause, M.; Klit, A.; Blomberg Jensen, M.; Søeborg, T.; Frederiksen, H.; Schlumpf, M.; Lichtensteiger, W.; Skakkebaek, N.E.; Drzewiecki, K.T. Sunscreens: Are they beneficial for health? An overview of endocrine disrupting properties of UV-filters. Int. J. Androl. 2012, 35, 424–436. [Google Scholar] [CrossRef]
- Downs, C.A.; Kramarsky-Winter, E.; Segal, R.; Fauth, J.; Knutson, S.; Bronstein, O.; Ciner, F.R.; Jeger, R.; Lichtenfeld, Y.; Woodley, C.M.; et al. Toxicopathological effects of the sunscreen UV filter, oxybenzone (benzophenone-3), on coral planulae and cultured primary cells and its environmental contamination in Hawaii and the U.S. Virgin Islands. Arch. Environ. Contam. Toxicol. 2016, 70, 265–288. [Google Scholar] [CrossRef]
- Fivenson, D.; Sabzevari, N.; Qiblawi, S.; Blitz, J.; Norton, B.B.; Norton, S.A. Sunscreens: UV filters to protect us: Part 2-Increasing awareness of UV filters and their potential toxicities to us and our environment. Int. J. Womens Dermatol. 2020, 7, 45–69. [Google Scholar] [CrossRef]
- Gago-Ferrero, P.; Díaz-Cruz, M.S.; Barceló, D. An overview of UV-absorbing compounds (organic UV filters) in aquatic biota. Anal. Bioanal. Chem. 2012, 404, 2597–2610. [Google Scholar] [CrossRef]
- Huang, Y.; Law, J.C.; Lam, T.K.; Leung, K.S. Risks of organic UV filters: A review of environmental and human health concern studies. Sci. Total Environ. 2021, 755, 142486. [Google Scholar] [CrossRef]
- Asgher, M.; Bhatti, H.N.; Ashraf, M.; Legge, R.L. Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme system. Biodegradation 2008, 19, 771–777. [Google Scholar] [CrossRef]
- Treu, R.; Falandysz, J. Mycoremediation of hydrocarbons with basidiomycetes-a review. J. Environ. Sci. Health B 2017, 52, 148–155. [Google Scholar] [CrossRef]
- Zahmatkesh, M.; Spanjers, H.; van Lier, J.B. Fungal treatment of humic-rich industrial wastewater: Application of white rot fungi in remediation of food-processing wastewater. Environ. Technol. 2017, 38, 2752–2762. [Google Scholar] [CrossRef] [Green Version]
- Pozdnyakova, N.N. Involvement of the ligninolytic system of white-rot and litter-decomposing fungi in the degradation of polycyclic aromatic hydrocarbons. Biotechnol. Res. Int. 2012, 2012, 243217. [Google Scholar] [CrossRef] [Green Version]
- Akhtar, N.; Mannan, M.A. Mycoremediation: Expunging environmental pollutants. Biotechnol. Rep. 2020, 26, e00452. [Google Scholar] [CrossRef]
- Arregui, L.; Ayala, M.; Gómez-Gil, X.; Gutiérrez-Soto, G.; Hernández-Luna, C.E.; Herrera de Los Santos, M.; Levin, L.; Rojo-Domínguez, A.; Romero-Martínez, D.; Saparrat, M.C.N.; et al. Laccases: Structure, function, and potential application in water bioremediation. Microb. Cell Fact. 2019, 18, 200. [Google Scholar] [CrossRef]
- Theerachat, M.; Guieysse, D.; Morel, S.; Remaud-Siméon, M.; Chulalaksananukul, W. Laccases from marine organisms and their applications in the biodegradation of toxic and environmental pollutants: A review. Appl. Biochem. Biotechnol. 2019, 187, 583–611. [Google Scholar] [CrossRef]
- Riva, S. Laccases: Blue enzymes for green chemistry. Trends. Biotechnol. 2006, 24, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, P.; Shrivastava, R.; Agrawal, P.K. Bioprospecting and biotechnological applications of fungal laccase. 3 Biotech 2016, 6, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, R.; Sharma, P.; Umar, A.; Kumar, R.; Singh, N.; Joshi, P.K.; A. Alharthi, F.; Ali Alghamdi, A.; Al-Zaqri, N. In vitro bioadsorption of Cd2+ ions: Adsorption isotherms, mechanism, and an insight to mycoremediation. Processes 2020, 8, 1085. [Google Scholar] [CrossRef]
- Kapahi, M.; Sachdeva, S. Mycoremediation potential of Pleurotus species for heavy metals: A review. Bioresour. Bioprocess 2017, 4, 32. [Google Scholar] [CrossRef] [Green Version]
- Chang, B.V.; Fan, S.N.; Tsai, Y.C.; Chung, Y.L.; Tu, P.X.; Yang, C.W. Removal of emerging contaminants using spent mushroom compost. Sci. Total Environ. 2018, 634, 922–933. [Google Scholar] [CrossRef]
- Yang, C.W.; Tsai, L.L.; Chang, B.V. Fungi extracellular enzyme-containing microcapsules enhance degradation of sulfonamide antibiotics in mangrove sediments. Environ. Sci. Pollut. Res. 2018, 25, 10069–10079. [Google Scholar] [CrossRef]
- Yang, C.W.; Chen, W.Z.; Chang, B.V. Biodegradation of tetrabromobisphenol-A in sludge with spent mushroom compost. Int. Biodeter. Biodeg. 2017, 119, 387–395. [Google Scholar] [CrossRef]
- He, H.; Zhang, Q.; Tang, L.F.; Shi, K.Y.; Hong, F.F.; Tao, X.X.; Ali, M.I.; Urynowicz, M.; Huang, Z. Biodegradation of concentrated benzoic acid using white-rot fungus Hypocrea lixii AH. Environ. Eng. Sci. 2020, 37, 482–489. [Google Scholar] [CrossRef]
- Zhao, J.; Jia, D.; Chi, Y.; Yao, K. Co-metabolic enzymes and pathways of 3-phenoxybenzoic acid degradation by Aspergillus oryzae M-4. Ecotoxicol. Environ. Saf. 2020, 189, 109953. [Google Scholar] [CrossRef]
- Xie, X.G.; Dai, C.C. Biodegradation of a model allelochemical cinnamic acid by a novel endophytic fungus Phomopsis liquidambari. Int. Biodeterior. Biodegrad. 2015, 104, 498–507. [Google Scholar] [CrossRef]
- Thakur, N.; Tripathi, A.; Sagar, S.; Kumar, P.; Devi, N.; Sharma, I.; Sharma, J. Estimation of extracellular ligninolytic enzymes from wild Auriculeria polytricha, Helvella sp. and Morchella sp. Int. J. Adv. Res. 2017, 5, 968–974. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.-W.; Tu, P.-H.; Tso, W.-Y.; Chang, B.-V. Removal of Organic UV Filters Using Enzymes in Spent Mushroom Composts from Fungicultures. Appl. Sci. 2021, 11, 3932. https://doi.org/10.3390/app11093932
Yang C-W, Tu P-H, Tso W-Y, Chang B-V. Removal of Organic UV Filters Using Enzymes in Spent Mushroom Composts from Fungicultures. Applied Sciences. 2021; 11(9):3932. https://doi.org/10.3390/app11093932
Chicago/Turabian StyleYang, Chu-Wen, Ping-Hsun Tu, Wen-Yi Tso, and Bea-Ven Chang. 2021. "Removal of Organic UV Filters Using Enzymes in Spent Mushroom Composts from Fungicultures" Applied Sciences 11, no. 9: 3932. https://doi.org/10.3390/app11093932
APA StyleYang, C. -W., Tu, P. -H., Tso, W. -Y., & Chang, B. -V. (2021). Removal of Organic UV Filters Using Enzymes in Spent Mushroom Composts from Fungicultures. Applied Sciences, 11(9), 3932. https://doi.org/10.3390/app11093932