Control of Linear Astigmatism Aberration in a Perturbed Axially Symmetric Optical System and Tolerancing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Lens Desensitizing
2.2. Lens Design form Change
2.3. Retrofocus Lens
2.4. Lens Compensation
2.5. Assembly Trials
3. Discussion and Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Conrady, A.E. Decentered Lens-systems. Mon. Not. R. Astron. Soc. 1919, 79, 384–390. [Google Scholar] [CrossRef] [Green Version]
- Epstein, L.I. The Aberrations of Slightly Decentered Optical Systems. J. Opt. Soc. Am. 1949, 39, 847. [Google Scholar] [CrossRef]
- Marechal, A. Etude des aberrations d’excentrement sur le centrage des instruments d’optique. Rev. Opt. 1950, 29, 1–24. [Google Scholar]
- Sasian, J.M. Introduction to Aberrations in Optical Imaging Systems; Cambridge University Press (CUP): Cambridge, UK, 2012. [Google Scholar]
- Wooters, G. Lens Centering in Microscope Objectives. J. Opt. Soc. Am. 1950, 40, 521–523. [Google Scholar] [CrossRef]
- Sasian, J.; Gao, W. Characteristics and control of linear astigmatism aberration in a nonaxially symmetric optical system. Opt. Eng. 2021, 60, 051206. [Google Scholar] [CrossRef]
- Grey, D.S. Tolerance Sensitivity and Optimization. Appl. Opt. 1970, 9, 523–526. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, H.H.; Tiziani, H.J. A theoretical and experimental study of lens centring errors and their influence on opti-cal image quality. Br. J. Appl. Phys. 1966, 17, 33. [Google Scholar] [CrossRef] [Green Version]
- Rimmer, M. Analysis of Perturbed Lens Systems. Appl. Opt. 1970, 9, 533–537. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Sasian, J.M. Merit figures for fast estimating tolerance sensitivity in lens systems. In Proceedings of the International Optical Design Conference 2010, Jackson Hole, WY, USA,, 9 September 2010; International Society for Optics and Photonics: Bellingham, WA, USA,, 2010; Volume 7652, p. 76521. [Google Scholar] [CrossRef]
- Bates, R. Performance and tolerance sensitivity optimization of highly aspheric miniature camera lenses. In Optical System Alignment, Tolerancing, and Verification IV; International Society for Optics and Photonics: Bellingham, WA, USA, 2010; Volume 7793, p. 779302. [Google Scholar]
- Rogers, J.R. Using global synthesis to find tolerance-insensitive design forms. In Proceedings of the International Optical Design Conference 2006, Vancouver, BC, Canada, 4–8 June 2006; Volume 6342, p. 63420M. [Google Scholar]
- Cheng, X.; Wang, Y.; Hao, Q. Study on tolerance sensitivity reduction in lens optimization. In Optical Design and Testing II; International Society for Optics and Photonics: Bellingham, WA, USA, 2005; Volume 5638. [Google Scholar]
- Zhang, K.; Dai, F.; Li, Z. Homogeneous optimization approach for reducing sensitivity of an optical lens system. Opt. Eng. 2020, 59, 035109. [Google Scholar] [CrossRef]
- Catalan, G. Design method of an astronomical telescope with reduced sensitivity to misalignment. Appl. Opt. 1994, 33, 1907–1915. [Google Scholar] [CrossRef] [PubMed]
- Petersen, J.S. Optical proximity strategies for desensitizing lens aberrations. In Lithography for Semiconductor Manufacturing II; International Society for Optics and Photonics: Bellingham, WA, USA, 2001; Volume 4404. [Google Scholar] [CrossRef]
- Bauman, B.J.; Schneider, M.D. Design of optical systems that maximize as-built performance using tol-erance/compensator-informed optimization. Opt. Express 2018, 26, 13819–13840. [Google Scholar] [CrossRef] [PubMed]
- Klemt, G. Wide-Angle Photographic and Cinematographic Objective. U.S. Patent 2,824,495, 25 February 1958. [Google Scholar]
- Sasián, J.M. Aberrations from a prism and a grating. Appl. Opt. 2000, 39, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Betensky, E.I. Aberration correction and desensitization of an inverse-triplet object lens. In Proceedings of the International Optical Design Conference, Kona, HI, USA, 8–12 June 1998; International Society for Optics and Photonics: Bellingham, WA, USA, 1998; Volume 3482, pp. 264–268. [Google Scholar]
- Funck, M.C.; Loosen, P. The effect of selective assembly on tolerance desensitization. In Proceedings of the International Optical Design Conference 2010, Jackson Hole, WY, USA,, 9 September 2010; International Society for Optics and Photonics: Bellingham, WA, USA, 2010; Volume 7652, p. 76521M. [Google Scholar] [CrossRef]
- Sasian, J.M. Design, assembly, and testing of an objective lens for a free-space photonic switching system. Opt. Eng. 1993, 32, 1871–1878. [Google Scholar] [CrossRef] [Green Version]
Cooke Triplet Lens Surface Sensitivities in Waves | ||||
---|---|---|---|---|
Surface | ||||
1 | 0.00 | −0.12 | 0.03 | 1.04 |
2 | 0.00 | −0.14 | 2.71 | −0.27 |
3 | 0.00 | −0.36 | −2.15 | −0.57 |
STOP | 0.00 | 0.22 | −1.57 | −0.39 |
5 | 0.00 | −0.19 | 0.52 | −0.71 |
6 | −0.01 | 0.47 | 1.15 | 0.80 |
RSS | 0.01 | 0.68 | 4.00 | 1.67 |
Desensitized Cooke Triplet Lens Surface Sensitivities in Waves | ||||
---|---|---|---|---|
Surface | ||||
1 | 0.00 | −0.17 | −0.06 | 1.09 |
2 | 0.00 | 0.10 | 1.35 | −0.59 |
3 | 0.00 | −0.25 | −1.89 | −0.41 |
STOP | 0.00 | 0.20 | −1.02 | −0.40 |
5 | 0.00 | −0.13 | 0.90 | −0.40 |
6 | 0.00 | 0.26 | 1.24 | 0.65 |
RSS | 0.01 | 0.48 | 2.96 | 1.57 |
Retrofocus Lens Surface Sensitivities in Waves | ||||
---|---|---|---|---|
Surface | ||||
1 | 0.00 | −0.05 | −0.05 | −0.05 |
2 | 0.00 | 0.19 | 1.11 | 0.48 |
3 | 0.00 | −0.08 | 0.82 | 0.15 |
4 | 0.00 | 0.38 | 2.46 | 1.48 |
5 | −0.01 | −1.43 | −3.03 | −1.85 |
6 | −0.01 | 0.58 | 2.01 | 0.95 |
7 | 0.00 | −0.71 | −0.53 | 0.64 |
8 | 0.00 | 0.38 | 1.67 | −0.28 |
9 | 0.00 | −0.90 | −5.97 | −1.58 |
10 | 0.00 | −0.15 | −0.27 | −0.04 |
11 | 0.00 | 1.31 | 0.95 | 0.42 |
12 | 0.00 | −0.45 | 0.34 | −0.95 |
13 | −0.01 | 0.46 | 6.10 | 2.43 |
STOP | 0.00 | 0.00 | −0.01 | 0.00 |
RSS | 0.02 | 2.49 | 9.91 | 4.11 |
Desensitized Retrofocus Lens Surface Sensitivities in Waves | ||||
---|---|---|---|---|
Surface | ||||
1 | 0.0 | −0.06 | −0.17 | 0.29 |
2 | 0.0 | 0.19 | 1.24 | 0.40 |
3 | 0.00 | −0.07 | 0.67 | 0.24 |
4 | 0.00 | 0.32 | 1.73 | 1.08 |
5 | −0.01 | −0.94 | −0.36 | −0.68 |
6 | 0.00 | 0.43 | 1.04 | 0.58 |
7 | 0.00 | −0.63 | 0.06 | 0.90 |
8 | 0.00 | 0.27 | 0.50 | −0.71 |
STOP | 0.00 | 0.00 | −0.02 | 0.00 |
10 | 0.00 | −0.43 | −2.43 | 0.00 |
11 | 0.00 | −0.16 | −0.08 | 0.07 |
12 | 0.00 | 0.89 | −0.97 | −0.75 |
13 | 0.00 | −0.26 | 1.12 | −0.08 |
14 | −0.01 | 0.34 | 4.13 | 1.64 |
RSS | 0.01 | 1.69 | 5.63 | 2.66 |
Telecentric Objective Lens Surface Sensitivities in Waves | ||||
---|---|---|---|---|
Surface | ||||
STOP | 0.00 | 0.00 | 0.00 | 0.00 |
2 | 0.00 | −0.11 | 0.20 | 0.12 |
3 | 0.00 | −0.65 | 0.37 | 0.19 |
4 | −0.01 | 1.18 | −0.73 | −0.40 |
5 | 0.00 | −0.28 | 0.21 | 0.22 |
6 | 0.00 | 0.54 | −0.33 | −0.30 |
7 | 0.00 | −0.19 | 0.23 | 0.21 |
8 | 0.00 | 0.06 | 0.02 | −0.07 |
RSS | 0.01 | 1.50 | 0.96 | 0.64 |
Objective Performance | |
---|---|
Number of Objectives | Strehl Ratio |
4 | 0.95 |
10 | 0.90 |
4 | 0.85 |
3 | 0.80 |
3 | 0.75 |
3 | <0.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sasián, J. Control of Linear Astigmatism Aberration in a Perturbed Axially Symmetric Optical System and Tolerancing. Appl. Sci. 2021, 11, 3928. https://doi.org/10.3390/app11093928
Sasián J. Control of Linear Astigmatism Aberration in a Perturbed Axially Symmetric Optical System and Tolerancing. Applied Sciences. 2021; 11(9):3928. https://doi.org/10.3390/app11093928
Chicago/Turabian StyleSasián, José. 2021. "Control of Linear Astigmatism Aberration in a Perturbed Axially Symmetric Optical System and Tolerancing" Applied Sciences 11, no. 9: 3928. https://doi.org/10.3390/app11093928
APA StyleSasián, J. (2021). Control of Linear Astigmatism Aberration in a Perturbed Axially Symmetric Optical System and Tolerancing. Applied Sciences, 11(9), 3928. https://doi.org/10.3390/app11093928