Surface Forming Criteria of Ti-6AL-4V Titanium Alloy under Laser Loading
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Scheme and Device
2.2. Numerical Simulation
3. Results and Discussion
3.1. Influence of Thickness on Forming Effect
3.2. Influence of Spot Diameter on Forming Effect
3.3. Influence of Energy on Forming Effect
3.4. Influence of Shock Times on Forming Effect
3.5. Resilience
4. Results of High-Speed Digital Camera
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Gan, F.; Fan, S.X. Theoretical analysis of impact force in laser impact molding. Laser J. 2013, 34, 54–56. [Google Scholar]
- Ji, K.K.; Zhang, X.Q.; Deng, L. Numerical Simulation on Deformation Velocity of 316L Stainless Steel Target Driven by Intense Lasers. Chin. J. Lasers 2016, 43, 110–117. [Google Scholar]
- Peyre, P.; Berthe, L.; Scherpereel, X. Laser-shock processing of aluminum-coated 55C1 steel in water-confinement regime, characterization and application to high-cycle fatigue behavior. J. Mater. Sci. 1998, 33, 1421–1429. [Google Scholar] [CrossRef]
- Tong, Y.Q.; Yao, H.B.; Zhang, Y.K. Experimental Research of High-Speed Plate Deformation Process Shocked by Strong and Short Pulsed Laser. Chin. J. Lasers 2011, 38, 122–126. [Google Scholar]
- Wu, J.; Zhou, J.Z.; Meng, X.K. Effect of laser shock strengthening on surface properties of W6Mo5Cr4V2 high speed steel. Surf. Technol. 2017, 46, 232–237. [Google Scholar]
- Ren, X.D.; Zhang, Y.K.; Zhou, J.Z.; Zhang, X.Q.; Lu, J.Z. Influence of laser parameters on laser shock forming of Ti6Al4V titanium alloy. Chin. J. Nonferrous Met. 2006, 16, 1850–1854. [Google Scholar]
- Cao, Z.W.; Zou, S.K.; Che, Z.G. Study on bending deformation and surface characteristics of aluminum alloy under laser-induced shock wave loading. Laser Optoelectron. Prog. 2015, 52, 130–134. [Google Scholar]
- Shi, C.Y. Study and Exploration on Fracture Criterion of Metal Sheet by Laser Shock Forming. Master’s Thesis, Jiangsu University, Zhenjiang, China, 2016. [Google Scholar]
- Zhang, Y. Numerical Simulation and Experimental Study of Laser Semi-Mode Multi-Point Shock Forming for Sheet Metal. Master’s Thesis, Anhui University of Technology, Ma on Shan, China, 2016. [Google Scholar]
- Xie, B.H. Study on Laser Shock Forming Process of Binary Optical Titanium Sheet. Master’s Thesis, Nanchang Hangkong University, Nanchang, China, 2016. [Google Scholar]
- Ren, X.D. High Temperature Service Material Laser Shock Technology; Science Press: Beijing, China, 2014; pp. 1–4. [Google Scholar]
- Fu, Y.; Liu, Q.; Ye, Y.; Hua, X.; Kang, Z.; Fu, H. Research on Laser Surface Micro Texturing Processing of Single Pulse Intervals. Chin. J. Lasers 2015, 42, 106–113. [Google Scholar]
- Gu, Y.Y.; Zhang, Y.K.; Zhang, X.Q. Theoretical study on the influence mechanism of confinement layer on shock wave pressure of laser drive. ACTA Phys. Sin. 2006, 11, 5885–5891. [Google Scholar]
- Zou, H.; Zhang, K.; Cao, X. Research of microstructure and residual stress of copper foils processed by laser shock forming. Laser Technol. 2018, 42, 94–99. [Google Scholar]
- William, B.; Robert, B. Finite element simulation of laser shock peening. Int. J. Fatigue 1999, 21, 719–724. [Google Scholar]
- Lian, Z.C. Numerical Study on Femtosecond Laser Shock Forming of Metallic Foil. Master’s Thesis, Jiangsu University, Zhenjiang, China, 2015. [Google Scholar]
- Johnson, G.R.; Cook, W.H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In Proceedings of the Seventh International Symposium on Ballistics, Hague, The Netherlands, 19–21 April 1983. [Google Scholar]
- Fabbro, R.; Fournier, J.; Ballard, P. Physical study of laser-produced plasma in confined geometry. J. Appl. Phys. 1990, 74, 2268–2273. [Google Scholar] [CrossRef]
- Fan, N.; Yao, H.B.; Ye, X. Failure behavior of TC4 titanium alloy under strong laser loading. Laser Optoelectron. Prog. 2019, 56, 150–154. [Google Scholar]
- Yao, H.; Zhou, Z.; Xing, B.; Ding, G.; Tong, Y.; Ping, J.; Li, L.; Zhang, Y. Measurement of dynamic characteristics of metal sheet under laser shock. Chin. Opt. Lett. 2012, 10, 3201. [Google Scholar]
Neodymium-Yttrium-Aluminum Garnet-GAIA Laser | |||
---|---|---|---|
Operation material | Neodymium-Yttrium-Aluminum Garnet | Repeat frequency (Hz) | 1~5 |
Wavelength (nm) | 1064 | Distribution form | Flat |
Laser energy (J) | <12 | Laser shape | Circle |
Pulse width (ns) | <12 | Spot diameter (mm) | Φ2~8 |
Material | ρ/(g cm−3) | E/Gpa | v | A/Mpa | B/Mpa | C | n | m |
---|---|---|---|---|---|---|---|---|
Ti-6AL-4V | 4.51 | 110 | 0.34 | 875 | 793 | 0.011 | 0.387 | 0.71 |
Test | Thickness (mm) | Energy (J) | Aperture (mm) | Morphology | Fracture Width (mm) | Maximum Deformation (mm) |
---|---|---|---|---|---|---|
0.03 | 3 | Filament shape | 4.5 | |||
0.03 | 4 | Irregular shape | 25.2 | |||
0.03 | 5 | 8.1 | Windmill shape | 21.4 | ||
Test 1 | 0.03 | 6 | 10.3 | Petals shape | 23.7 | |
0.03 | 7 | 11 | Petals shape | 22.4 | ||
0.03 | 8 | Rectangular | 23.1 | |||
0.03 | 9 | Rectangular | 25.8 | |||
0.03 | 10 | 14.2 | Petals shape | 20.1 | ||
0.08 | 3 | Smooth without crack | 0.8887 | |||
0.08 | 5 | Smooth without crack | 1.3879 | |||
0.08 | 6 | Smooth without crack | 1.5548 | |||
Test 2 | 0.08 | 7 | Smooth without crack | 1.8823 | ||
0.08 | 8 | Smooth without crack | 1.9213 | |||
0.08 | 9 | Smooth without crack | 2.6463 | |||
0.08 | 10 | Smooth without crack | 2.6519 |
Thickness (mm) | Energy (J) | Aperture (mm) | Morphology | Fracture Width (mm) | Maximum Deformation (mm) |
---|---|---|---|---|---|
0.08 | 1 | Smooth without crack | 1.5548 | ||
0.08 | 2 | Smooth without crack | 2.1628 | ||
0.08 | 3 | Smooth without crack | 3.0661 | ||
0.08 | 4 | <7 | Small hole | 2.8 | |
0.08 | 5 | <7 | Triangle hole | 11.2 | |
0.08 | 6 | 7 | Petals shape | 9 | |
0.08 | 7 | 7.3 | Petals shape | 7.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, F.; Ye, X.; Yao, H.; Wei, P.; Wang, X.; Cong, J.; Tong, Y. Surface Forming Criteria of Ti-6AL-4V Titanium Alloy under Laser Loading. Appl. Sci. 2021, 11, 5406. https://doi.org/10.3390/app11125406
Yin F, Ye X, Yao H, Wei P, Wang X, Cong J, Tong Y. Surface Forming Criteria of Ti-6AL-4V Titanium Alloy under Laser Loading. Applied Sciences. 2021; 11(12):5406. https://doi.org/10.3390/app11125406
Chicago/Turabian StyleYin, Fei, Xia Ye, Hongbing Yao, Pengyu Wei, Xumei Wang, Jiawei Cong, and Yanqun Tong. 2021. "Surface Forming Criteria of Ti-6AL-4V Titanium Alloy under Laser Loading" Applied Sciences 11, no. 12: 5406. https://doi.org/10.3390/app11125406
APA StyleYin, F., Ye, X., Yao, H., Wei, P., Wang, X., Cong, J., & Tong, Y. (2021). Surface Forming Criteria of Ti-6AL-4V Titanium Alloy under Laser Loading. Applied Sciences, 11(12), 5406. https://doi.org/10.3390/app11125406