Femtosecond Laser Ablation of a Bulk Graphite Target in Water for Polyyne and Nanomaterial Synthesis
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. UV-Vis Spectrophotometry
3.2. XRD and TEM
3.3. Raman Spectroscopy
3.4. LIBS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ganash, E.A.; Al-Jabarti, G.A.; Altuwirqi, R.M. The synthesis of carbon-based nanomaterials by pulsed laser ablation in water. Mater. Res. Express 2020, 7, 015002–015012. [Google Scholar] [CrossRef]
- Altuwirqi, R.M. Graphene Nanostructures by Pulsed Laser Ablation in Liquids: A Review. Materials 2022, 15, 5925. [Google Scholar] [CrossRef] [PubMed]
- Yogesh, G.K.; Shukla, S.; Sastikumar, D.; Koinkar, P. Progress in pulsed laser ablation in liquid (PLAL) technique for the synthesis of carbon nanomaterials: A review. Appl. Phys. A 2021, 127, 810–850. [Google Scholar] [CrossRef]
- Marabotti, P.; Peggiani, S.; Vidale, A.; Casari, C.S. Pulsed laser ablation in liquid of sp-carbon chains: Status and recent advances. Chin. Phys. B 2022, 31, 125202–125223. [Google Scholar] [CrossRef]
- Peggiani, S.; Marabotti, P.; Lotti, R.A.; Facibeni, A.; Serafini, P.; Milani, A.; Russo, V.; Bassi, A.L.; Casari, C.S. Solvent-dependent termination, size and stability of polyynes synthesized via laser ablation in liquids. Phys. Chem. Chem. Phys. 2020, 22, 26312–26321. [Google Scholar] [CrossRef]
- Compagnini, G.; Mita, V.; Cataliotti, R.S.; D’Urso, L.; Puglisi, O. Short polyyne chains produced by pulsed laser ablation of graphite in water. Carbon 2007, 45, 2445–2458. [Google Scholar] [CrossRef]
- Choi, Y.K.; Song, J.K.; Park, S.M. Production of Hydrogen-Capped Polyynes by Laser Ablation of Graphite in Neat Water. Bull. Korean Chem. Soc. 2009, 30, 3073–3074. [Google Scholar] [CrossRef]
- Park, Y.E.; Shin, S.K.; Park, S.M. The physical effects on the formation of polyynes by laser ablation. Chem. Phys. Lett. 2013, 568, 112–116. [Google Scholar] [CrossRef]
- Shin, S.K.; Song, J.K.; Park, S.M. Preparation of polyynes by laser ablation of graphite in aqueous media. Appl. Surf. Sci. 2011, 257, 5156–5158. [Google Scholar] [CrossRef]
- Compagnini, G.; Russo, P.; Tomarchio, F.; Puglisi, O.; D’Urso, L.; Scalese, S. Laser assisted green synthesis of free standing reduced graphene oxides at the water-air interface. Nanotechnology 2012, 23, 505601–505607. [Google Scholar] [CrossRef]
- Russo, P.; Hu, A.; Compagnini, G.; Duley, W.W.; Zhou, N.Y. Femtosecond laser ablation of highly oriented pyrolytic graphite: A green route for large-scale production of porous graphene and graphene quantum dots. Nanoscale 2014, 6, 2381–2389. [Google Scholar] [CrossRef]
- Bagga, K.; McCann, R.; Wang, M.; Stalcup, A.; Vázquez, M.; Brabazon, D. Laser assisted synthesis of carbon nanoparticles with controlled viscosities for printing applications. J. Colloid Interface Sci. 2015, 447, 263–268. [Google Scholar] [CrossRef]
- Hu, A.; Rybachuk, M.; Lu, Q.-B.; Duley, W.W. Direct synthesis of sp-bonded carbon chains on graphite surface by femtosecond laser irradiation. Appl. Phys. Lett. 2007, 91, 131906–131909. [Google Scholar] [CrossRef]
- Tsuji, M.; Tsuji, T.; Kyboyama, S.; Yoon, S.-H.; Korai, Y.; Tsujimoto, T.; Kubo, K.; Mori, A.; Mochida, I. Formation of hydrogen-capped polyynes by laser ablation of graphite particles suspended in solution. Chem. Phys. Lett. 2002, 355, 101–108. [Google Scholar] [CrossRef]
- Chichkov, B.N.; Momma, C.; Nolte, S.; von Alvensleben, F.; Tünnermann, A. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 1996, 63, 109–115. [Google Scholar] [CrossRef]
- Hashimoto, S.; Werner, D.; Uwada, T. Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication. J. Photochem. Photobiol. C 2012, 13, 28–54. [Google Scholar] [CrossRef]
- Gellini, C.; Deepak, F.L.; Muniz-Miranda, M.; Caporali, S.; Muniz-Miranda, F.; Pedone, A.; Innocenti, C.; Sangregorio, C. Magneto-Plasmonic Colloidal Nanoparticles Obtained by Laser Ablation of Nickel and Silver Targets in Water. J. Phys. Chem. C 2017, 121, 3597–3606. [Google Scholar] [CrossRef]
- Noll, R. Laser-Induced Breakdown Spectroscopy: Fundamentals and Applications; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Amans, D.; Chenus, A.-C.; Ledoux, G.; Dujardin, C.; Reynaud, C.; Sublemontier, O.; Masenelli-Varlot, K.; Guillois, O. Nanodiamond synthesis by pulsed laser ablation in liquids. Diam. Relat. Mater. 2009, 18, 177–180. [Google Scholar] [CrossRef]
- Mortazavi, S.Z.; Parvin, P.; Reyhani, A.; Mirershadi, S.; Sadighi-Bonabi, R. Generation of various carbon nanostructures in water using IR/UV laser ablation. J. Phys. D 2013, 46, 165303–165312. [Google Scholar] [CrossRef]
- NIST. NIST Atomic Spectra Database Lines Form. Available online: https://physics.nist.gov/PhysRefData/ASD/lines_form.html (accessed on 21 August 2023).
- Wakabayashi, T.; Nagayama, H.; Daigoku, K.; Kiyooka, Y.; Hashimoto, K. Laser induced emission spectra of polyyne molecules C2nH2 (n = 5–8). Chem. Phys. Lett. 2007, 446, 65–70. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, Y.; Shi, L. A review of linear carbon chains. Chin. Chem. Lett. 2020, 31, 1746–1756. [Google Scholar] [CrossRef]
- Lotti, R.A. Sp-Carbon Chains by Pulsed Laser Ablation in Liquids: Synthesis and Stability. Master’s Thesis, University of Milan, Milan, Italy, 2019. [Google Scholar]
- Yang, S.; Kertesz, M. Bond Length Alteration and Energy Band Gap of Polyyne. J. Phys. Chem. A 2006, 110, 9771–9774. [Google Scholar] [CrossRef] [PubMed]
- Casari, C.S.; Tommasini, M.; Tykwinski, R.R.; Milani, A. Carbon-atom wires: 1-D systems with tunable properties. Nanoscale 2016, 8, 4414–4435. [Google Scholar] [CrossRef] [PubMed]
- Taguchi, Y.; Endo, H.; Abe, Y.; Matsumoto, J.; Wakabayashi, T.; Kodama, T.; Achiba, Y.; Shiromaru, H. Polyyne formation by graphite laser ablation in argon and propane mixed gases. Carbon 2015, 94, 124–128. [Google Scholar] [CrossRef]
- JCPDS no. 00-056-0159 (Graphite-Hexagonal). 2023 International Centre for Diffraction Data. Available online: icdd.com (accessed on 10 May 2023).
- Tuinstra, F.; Koenig, J.L. Raman Spectrum of Graphite. J. Chem. Phys. 1970, 53, 1126–1130. [Google Scholar] [CrossRef]
- Lucchese, M.M.; Stavale, F.; Martins Ferreira, E.H.; Vilani, C.; Moutinho, M.V.O.; Capaz, R.B.; Achete, C.A.; Jorio, A. Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 2010, 48, 1592–1597. [Google Scholar] [CrossRef]
- Woo, W.K.; Hung, Y.M.; Wang, X. Anomalously enhanced thermal conductivity of graphite-oxide nanofluids synthesized via liquid-phase pulsed laser ablation. Case Stud. Therm. Eng. 2021, 25, 100993–101006. [Google Scholar] [CrossRef]
- Dudek, M.; Rosowski, A.; Koperkiewicz, A.; Grobelny, J.; Wach, R.; Sharp, M.; French, P.; Janasz, L.; Kozanecki, M. Carbon nanoparticles fabricated by infrared laser ablation of graphite and polycrystalline diamond targets. Phys. Status Solidi A 2017, 214, 1600318–1600326. [Google Scholar] [CrossRef]
- Tabata, H.; Fujii, M.; Hayashi, S.; Doi, T.; Wakabayashi, T. Raman and surface-enhanced Raman scattering of a series of size-separated polyynes. Carbon 2006, 44, 3168–3176. [Google Scholar] [CrossRef]
- Sakka, T.; Iwanaga, S.; Ogata, Y.H.; Matsunawa, A.; Takemoto, T. Laser ablation at solid-liquid interfaces: An approach from optical emission spectra. J. Chem. Phys. 2000, 112, 8645–8653. [Google Scholar] [CrossRef]
- Claeyssens, F.; Lade, R.J.; Rosser, K.N.; Ashfold, M.N.R. Investigations of the plume accompanying pulsed ultraviolet laser ablation of graphite in vacuum. J. Appl. Phys. 2001, 89, 697–709. [Google Scholar] [CrossRef]
- Wakisaka, A.; Gaumet, J.J.; Shimizu, Y.; Tamori, Y.; Sato, H.; Tokumaru, K. Growth of Carbon Clusters. J. Chem. Soc. Farad. Trans. 1993, 89, 1001–1005. [Google Scholar] [CrossRef]
- Al-Shboul, K.F.; Harilal, S.S.; Hassanein, A. Emission features of femtosecond laser ablated carbon plasma in ambient helium. J. Appl. Phys. 2013, 113, 163305–163314. [Google Scholar] [CrossRef]
- Parigger, C.G.; Woods, A.C.; Surmick, D.M.; Gautam, G.; Witte, M.J.; Hornkohl, J.O. Computation of diatomic molecular spectra for selected transitions of aluminium monoxide, cyanide, diatomic carbon, and titanium monoxide. Spectr. Chim. Act. B 2015, 107, 132–138. [Google Scholar] [CrossRef]
- Parigger, C.G. Diatomic Line Strengths for Fitting Selected Molecular Transitions of AlO, C2, CN, OH, N2+, NO, and TiO, Spectra. Foundations 2023, 3, 1–15. [Google Scholar] [CrossRef]
- Saito, K.; Sakka, T.; Ogata, Y.H. Rotational spectra and temperature evaluation of C2 molecules produced by pulsed laser irradiation to a graphite-water interface. J. Appl. Phys. 2003, 94, 5530–5536. [Google Scholar] [CrossRef]
- Chaudhary, K.; Rosalan, S.; Aziz, M.S.; Bohadoran, M.; Ali, J.; Yupapin, P.P.; Bidin, N. Saktioto, Laser-Induced Graphite Plasma Kinetic Spectroscopy under Different Ambient Pressures. Chin. Phys. Lett. 2015, 32, 043201–043206. [Google Scholar] [CrossRef]
- Claeyssens, F.; Ashfold, M.N.R.; Sofoulakis, E.; Ristoscu, C.G.; Anglos, D.; Fotakis, C. Plume emissions accompanying 248 nm laser ablation of graphite in vacuum: Effects of pulse duration. J. Appl. Phys. 2002, 91, 6162–6172. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Semaltianos, N.G.; Balachninaitė, O.; Juškėnas, R.; Drabavicius, A.; Niaura, G.; Hendry, E. Femtosecond Laser Ablation of a Bulk Graphite Target in Water for Polyyne and Nanomaterial Synthesis. Appl. Sci. 2023, 13, 10388. https://doi.org/10.3390/app131810388
Semaltianos NG, Balachninaitė O, Juškėnas R, Drabavicius A, Niaura G, Hendry E. Femtosecond Laser Ablation of a Bulk Graphite Target in Water for Polyyne and Nanomaterial Synthesis. Applied Sciences. 2023; 13(18):10388. https://doi.org/10.3390/app131810388
Chicago/Turabian StyleSemaltianos, Nikolaos G., Ona Balachninaitė, Remigijus Juškėnas, Audrius Drabavicius, Gediminas Niaura, and Euan Hendry. 2023. "Femtosecond Laser Ablation of a Bulk Graphite Target in Water for Polyyne and Nanomaterial Synthesis" Applied Sciences 13, no. 18: 10388. https://doi.org/10.3390/app131810388
APA StyleSemaltianos, N. G., Balachninaitė, O., Juškėnas, R., Drabavicius, A., Niaura, G., & Hendry, E. (2023). Femtosecond Laser Ablation of a Bulk Graphite Target in Water for Polyyne and Nanomaterial Synthesis. Applied Sciences, 13(18), 10388. https://doi.org/10.3390/app131810388