Vortex Breakdown Control by the Plasma Swirl Injector
Abstract
:1. Introduction
2. Layout of the Experimental Setup
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Roth, J.R.; Sherman, D.M.; Wilkinson, P.S. Electrohydrodynamic flow control with a glow-discharge surface plasma. AIAA J. 2000, 38, 1166–1172. [Google Scholar] [CrossRef]
- Moreau, E. Airflow control by non-thermal plasma actuators. J. Phys. D Appl. Phys. 2007, 40, 605–636. [Google Scholar] [CrossRef]
- Corke, T.C.; Enloe, C.L.; Wilkinson, S.P. Dielectric Barrier Discharge Plasma Actuators for Flow Control. Annu. Rev. Fluid Mech. 2010, 42, 505–529. [Google Scholar] [CrossRef]
- Wang, J.J.; Choi, K.S.; Feng, L.H.; Timothy, D.W. Richard, Recent developments in DBD plasma flow control. Prog. Aerosp. Sci. 2013, 62, 52–78. [Google Scholar] [CrossRef]
- Kriegseis, J.; Simon, B.; Grundmann, S. Towards in-flight applications? A review on dielectric barrier discharge-based boundary-layer control. Appl. Mech. Rev. 2016, 68, 020802. [Google Scholar] [CrossRef]
- Leonov, S.B.; Adamovich, I.V.; Soloviev, V.R. Dynamics of near-surface electric discharges and mechanisms of their interaction with the airflow. Plasma Sources Sci. Technol. 2016, 25, 063001. [Google Scholar] [CrossRef]
- Konstantinidis, E. Active Control of Bluff-Body Flows Using Plasma Actuators. Actuators 2019, 8, 66. [Google Scholar] [CrossRef] [Green Version]
- Roupassov, D.V.; Nikipelov, A.A.; Nudnova, M.M.; Starikovskii, A.Y. Flow Separation Control by Plasma Actuator with Nanosecond Pulsed-Periodic Discharge. AIAA J. 2009, 47, 168–185. [Google Scholar] [CrossRef]
- Little, J.; Takashima, K.; Nishihara, M.; Adamovich, I.; Samimy, M. Separation Control with Nanosecond-Pulse-Driven Dielectric Barrier Discharge Plasma Actuators. AIAA J. 2012, 50, 350–365. [Google Scholar] [CrossRef]
- Fujii, K. Three Flow Features behind the Flow Control Authority of DBD Plasma Actuator: Result of High-Fidelity Simulations and the Related Experiments. Appl. Sci. 2018, 8, 546. [Google Scholar] [CrossRef] [Green Version]
- Shyy, W.; Jayaraman, B.; Andersson, A. Modeling of glow discharge-induced fluid dynamics. J. Appl. Phys. 2002, 92, 6434–6443. [Google Scholar] [CrossRef]
- Hasan, M.; Atkinson, M. Investigation of a Dielectric Barrier Discharge Plasma Actuator to Control Turbulent Boundary Layer Separation. Appl. Sci. 2020, 10, 1911. [Google Scholar] [CrossRef] [Green Version]
- Skourides, C.; Nyfantis, D.; Leyland, P.; Bosse, H.; Ott, P. Mechanisms of Control Authority by Nanosecond Pulsed Dielectric Barrier Discharge Actuators on Flow Separation. Appl. Sci. 2019, 9, 2989. [Google Scholar] [CrossRef] [Green Version]
- Pescini, E.; de Giorgi, M.G.; Suma, A.; Francioso, L.; Ficarella, A. Separation control by a microfabricated SDBD plasma actuator for small engine turbine applications: Influence of the excitation waveform. Aerosp. Sci. Technol. 2018, 76, 442–454. [Google Scholar] [CrossRef]
- Lo, K.-H.; Sriram, R.; Kontis, K. Wake flow characteristics over an articulated lorry model with/without AC-DBD plasma actuation. Appl. Sci. 2019, 9, 2426. [Google Scholar] [CrossRef] [Green Version]
- Go, D.B.; Garimella, S.V.; Fisher, T.S.; Mongia, R.K. Ionic winds for locally enhanced cooling. J. Appl. Phys. 2007, 102, 053302. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.; Wang, C.-C. Plasma actuated heat transfer. Appl. Phys. Lett. 2008, 92, 231501. [Google Scholar] [CrossRef] [Green Version]
- Audier, P.; Fenot, M.; Benard, N.; Moreau, E. Film cooling effectiveness enhancement using surface dielectric barrier discharge plasma actuator. Int. J. Heat Fluid Flow 2016, 62, 247–257. [Google Scholar] [CrossRef]
- Xiao, Y.; Dai, S.; He, L.; Jin, T.; Zhang, Q.; Hou, P. Investigation of film cooling from cylindrical hole with plasma actuator on flat plate. Heat Mass Transf. 2016, 52, 1571–1583. [Google Scholar] [CrossRef]
- Kim, Y.J.; Kim, G.M.; Shin, Y.; Kwak, J.S. Experimental Investigation on the Effects of DBD Plasma on the Film Cooling Effectiveness of a 30-Degree Slot. Appl. Sci. 2017, 7, 633. [Google Scholar] [CrossRef]
- Uehara, S.; Takana, H. Surface cooling by dielectric barrier discharge plasma actuator in confinement channel. J. Electrost. 2020, 104, 103417. [Google Scholar] [CrossRef]
- Hebrero, F.C.; Adamo, J.D.; Sosa, R.; Artana, G. Vortex induced vibrations suppression for a cylinder with plasma actuators. J. Sound Vib. 2020, 468, 115121. [Google Scholar] [CrossRef]
- Yokoyama, H.; Tanimoto, I.; Iida, A. Experimental Tests and Aeroacoustic Simulations of the Control of Cavity Tone by Plasma Actuators. Appl. Sci. 2017, 7, 790. [Google Scholar] [CrossRef] [Green Version]
- de Jong, A.; Bijl, H. Corner-type plasma actuators for cavity flow-induced noise control. AIAA J. 2014, 52, 33–42. [Google Scholar] [CrossRef]
- da Silva, G.P.G.; Eguea, J.P.; Croce, J.A.G.; Catalano, M.F. Slat aerodynamic noise reduction using dielectric barrier discharge plasma actuators. Aerosp. Sci. Technol. 2020, 97, 105642. [Google Scholar] [CrossRef]
- Sato, S.; Yokoyama, H.; Iida, A. Control of Flow around an Oscillating Plate for Lift Enhancement by Plasma Actuators. Appl. Sci. 2019, 9, 776. [Google Scholar] [CrossRef] [Green Version]
- Motta, V.; Malzacher, L.; Peitsch, D. Numerical Assessment of Virtual Control Surfaces for Load Alleviation on Compressor Blades. Appl. Sci. 2018, 8, 125. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.; Wang, C.-C. Bulk flow modification with horseshoe and serpentine plasma actuators. J. Phys. D Appl. Phys. 2008, 42, 032004. [Google Scholar] [CrossRef]
- Hoskinson, A.R.; Hershkowitz, N.; Ashpis, D.E. Force measurements of single and double barrier DBD plasma actuators in quiescent air. J. Phys. D Appl. Phys. 2008, 41, 245209. [Google Scholar] [CrossRef] [Green Version]
- Pescini, E.; Francioso, L.; De Giorgi, M.G.; Ficarella, A. Investigation of a micro dielectric barrier discharge plasma actuator for regional aircraft active flow control. IEEE Trans. Plasma Sci. 2015, 43, 3668–3680. [Google Scholar] [CrossRef]
- Moreau, E.; Cazour, J.; Benard, N. Influence of the air-exposed active electrode shape on the electrical, optical and mechanical characteristics of a surface dielectric barrier discharge plasma actuator. J. Electrost. 2018, 93, 146–153. [Google Scholar] [CrossRef]
- Benard, N.; Audier, P.; Moreau, E.; Takashima, K.; Mizuno, A. Active plasma grid for on-demand airflow mixing increase. J. Electrost. 2017, 88, 15–23. [Google Scholar] [CrossRef]
- Peckham, D.H.; Atkinson, S.A. Preliminary Results of Low Speed Wind Tunnel Test on a Ghotic Wing of Aspect Ratio 1.0; British Aeronautical Research Council: London, UK, 1957. [Google Scholar]
- Sarpkaya, T. On stationary and travelling vortex breakdowns. J. Fluid Mech. 1971, 45, 545–559. [Google Scholar] [CrossRef]
- Sarpkaya, T. Vortex Breakdown in Swirling Conical Flows. AIAA J. 1971, 9, 1792–1799. [Google Scholar] [CrossRef]
- Leibovich, S. The Structure of Vortex Breakdown. Annu. Rev. Fluid Mech. 1978, 10, 221–246. [Google Scholar] [CrossRef]
- Benjamin, T.B. Theory of the vortex breakdown phenomenon. J. Fluid Mech. 1962, 14, 593–629. [Google Scholar] [CrossRef]
- Gartshore, I.S. Recent Work in Swirling Incompressible Flow; Report LR-343; National Research Council Canada: Ottawa, OT, Canada, 1962. [Google Scholar]
- Leibovich, S.; Stewartson, K. A sufficient condition for the instability of columnar vortices. J. Fluid Mech. 1983, 126, 335–356. [Google Scholar] [CrossRef]
- Shtern, V. Cellular Flows; Cambridge University Press: New York, NY, USA, 2018. [Google Scholar]
- Althaus, W.; Krause, E.; Hofhaus, J.; Weimer, M. Vortex breakdown: Transition between bubble- and spiral-type breakdown. Meccanica 1994, 29, 373–382. [Google Scholar] [CrossRef]
- Herrada, M.A.; Shtern, V. Control of vortex breakdown by temperature gradients. Phys. Fluids 2003, 15, 3468–3477. [Google Scholar] [CrossRef]
- Srigrarom, S.; Kurosaka, M. Shaping of delta-wing planform to suppress vortex breakdown. AIAA J. 2012, 38, 183–186. [Google Scholar] [CrossRef]
- Schmucker, A.; Gersten, K. Vortex breakdown and its control on delta wings. Fluid Dyn. Res. 1998, 3, 268. [Google Scholar] [CrossRef]
- Gutmark, E.J.; Guillot, S.A. Control of vortex breakdown over highly swept wings. AIAA J. 2005, 43, 2065–2069. [Google Scholar] [CrossRef]
- Mununga, L.; Jacono, D.L.; Sorensen, J.N.; Leweke, T.; Thompson, M.C.; Hourigan, K. Control of confined vortex breakdown with partial rotating lids. J. Fluid Mech. 2014, 738, 5–33. [Google Scholar] [CrossRef] [Green Version]
- Husain, H.S.; Shtern, V.; Hussain, F. Control of vortex breakdown by addition of near-axis swirl. Phys. Fluids 2003, 15, 271–279. [Google Scholar] [CrossRef] [Green Version]
- Zheltovodov, A.; Pimonov, E.; Knight, D. Supersonic Vortex Breakdown Control by Energy Deposition. In Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 10–13 January 2005; p. 1048. [Google Scholar]
- Mitchell, A.M.; Delery, J. Research into vortex breakdown control. Prog. Aerosp. Sci. 2001, 37, 385–418. [Google Scholar] [CrossRef]
- Li, G.; Jiang, X. Effects of electrical parameters on the performance of a plasma swirler. Phys. Scr. 2019, 94, 095601. [Google Scholar] [CrossRef]
- Li, G.; Shao, W.; Xu, Y.; Hu, H.; Liu, Y.; Nie, C.; Zhu, J. Swirl diffusion flame control by the plasma swirler. Sci. China Ser. E Technol. Sci. 2011, 54, 1820–1825. [Google Scholar] [CrossRef]
- Li, G.; Jiang, X.; Zhao, Y.; Liu, C.; Chen, Q.; Xu, G.; Liu, F. Jet flow and premixed jet flame control by plasma swirler. Phys. Lett. A 2017, 381, 1158–1162. [Google Scholar] [CrossRef]
- Li, G.; Jiang, X.; Zhu, J.; Yang, J.; Liu, C.; Mu, Y.; Xu, G. Combustion control using a lobed swirl injector and a plasma swirler. Appl. Therm. Eng. 2019, 152, 92–102. [Google Scholar] [CrossRef]
- Li, G.; Jiang, X.; Chen, Q.; Wang, Z. Flame lift-off height control by a combined vane-plasma swirler. J. Phys. D Appl. Phys. 2018, 51, 345205. [Google Scholar] [CrossRef]
- Li, G.; Jiang, X.; Jiang, L.; Lei, Z.; Zhu, J.; Mu, Y.; Xu, G. Design and experimental evaluation of a plasma swirler with helical shaped actuators. Sens. Actuators A Phys. 2020, 315, 112250. [Google Scholar] [CrossRef]
Test Case | Actuator Status | Waveform Type | Voltage Amplitude (kV) | Voltage Frequency (kHz) | Power Inputs (W) |
---|---|---|---|---|---|
1 | OFF | - | - | - | - |
2 | ON | Sinusoidal | 12 | 9 | 31 |
3 | ON | Sinusoidal | 15 | 9 | 45 |
4 | ON | Sinusoidal | 18 | 9 | 60 |
5 | ON | Sinusoidal | 21 | 9 | 76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Jiang, X.; Du, W.; Yang, J.; Liu, C.; Mu, Y.; Xu, G. Vortex Breakdown Control by the Plasma Swirl Injector. Appl. Sci. 2021, 11, 5537. https://doi.org/10.3390/app11125537
Li G, Jiang X, Du W, Yang J, Liu C, Mu Y, Xu G. Vortex Breakdown Control by the Plasma Swirl Injector. Applied Sciences. 2021; 11(12):5537. https://doi.org/10.3390/app11125537
Chicago/Turabian StyleLi, Gang, Xi Jiang, Wei Du, Jinhu Yang, Cunxi Liu, Yong Mu, and Gang Xu. 2021. "Vortex Breakdown Control by the Plasma Swirl Injector" Applied Sciences 11, no. 12: 5537. https://doi.org/10.3390/app11125537
APA StyleLi, G., Jiang, X., Du, W., Yang, J., Liu, C., Mu, Y., & Xu, G. (2021). Vortex Breakdown Control by the Plasma Swirl Injector. Applied Sciences, 11(12), 5537. https://doi.org/10.3390/app11125537