Soft Matter Sample Environments for Time-Resolved Small Angle Neutron Scattering Experiments: A Review
Abstract
:Featured Application
Abstract
1. Introduction
2. Time Resolution
3. Sample Environments
3.1. Temperature
3.2. Pressure
3.3. Shear and Rheology
3.4. Mechanical Deformation
3.5. Stop Flow/Chemistry On-Line
3.6. Electromagnetic Fields
3.7. Light
3.8. Container-Less Measurements
3.9. Ultrasound
3.10. Humidity Control
3.11. Devices
4. In-Situ Technique Combinations
5. New Directions
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hemberg, O.; Otendal, M.; Hertz, H.M. Liquid-metal-jet anode X-ray tube. Opt. Eng. 2004, 43, 1682–1688. [Google Scholar] [CrossRef]
- Bauters, S.; Tack, P.; Rudloff-Grund, J.H.; Banerjee, D.; Longo, A.; Vekemans, B.; Bras, W.; Brenker, F.E.; van Silfhout, R.; Vincze, L. Polycapillary Optics Based Confocal Micro X-ray Fluorescence and X-ray Absorption Spectroscopy Setup at The European Synchrotron Radiation Facility Collaborative Research Group Dutch-Belgian Beamline. Anal. Chem. 2018, 90, 2389–2394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donath, T.; Brandstetter, S.; Cibik, L.; Commichau, S.; Hofer, P.; Krumrey, M.; Luthi, B.; Marggraf, S.; Muller, P.; Schneebeli, M.; et al. Characterization of the PILATUS photon-counting pixel detector for X-ray energies from 1.75 keV to 60 keV. In Proceedings of the 11th International Conference on Synchrotron Radiation Instrumentation (Sri 2012), Lyon, France, 9–13 July 2012; p. 425. [Google Scholar]
- Jinnai, H.; Hasegawa, H.; Hashimoto, T.; Han, C.C. Time-resolved small-angle neutron-scattering in intermediate-stage and late-stage spinodal decomposition of dpb hpi blends. Macromolecules 1991, 24, 282–289. [Google Scholar] [CrossRef]
- Connell, J.G.; Richards, R.W.; Rennie, A.R. Phase-separation kinetics in concentrated-solutions of linear diblock copolymers of polystyrene and polyisoprene from time-resolved small-angle neutron-scattering. Polymer 1991, 32, 2033–2042. [Google Scholar] [CrossRef]
- Egelhaaf, S.U.; Schurtenberger, P. Micelle-to-vesicle transition: A time-resolved structural study. Phys. Rev. Lett. 1999, 82, 2804–2807. [Google Scholar] [CrossRef]
- Hollamby, M.J.; Borisova, D.; Brown, P.; Eastoe, J.; Grillo, I.; Shchukin, D. Growth of Mesoporous Silica Nanoparticles Monitored by Time-Resolved Small-Angle Neutron Scattering. Langmuir 2012, 28, 4425–4433. [Google Scholar] [CrossRef]
- Niimura, N.; Minezaki, Y.; Ataka, M.; Katsura, T. Aggregation in supersaturated lysozyme solution studied by time-resolved small-angle neutron-scattering. J. Cryst. Growth 1995, 154, 136–144. [Google Scholar] [CrossRef]
- Mahabir, S.; Small, D.; Li, M.; Wan, W.K.; Kucerka, N.; Littrell, K.; Katsaras, J.; Nieh, M.P. Growth kinetics of lipid-based nanodiscs to unilamellar vesicles-A time-resolved small angle neutron scattering (SANS) study. Biochim. Biophys. Acta-Biomembr. 2013, 1828, 1025–1035. [Google Scholar] [CrossRef]
- Mason, T.G.; Lin, M.Y. Time-resolved small angle neutron scattering measurements of asphaltene nanoparticle aggregation kinetics in incompatible crude oil mixtures. J. Chem. Phys. 2003, 119, 565–571. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Barron, C.R.; Wagner, N.J.; Porcar, L. Layering, melting, and recrystallization of a close-packed micellar crystal under steady and large-amplitude oscillatory shear flows. J. Rheol. 2015, 59, 793–820. [Google Scholar] [CrossRef]
- Lopez-Barron, C.R.; Gurnon, A.K.; Eberle, A.P.R.; Porcar, L.; Wagner, N.J. Microstructural evolution of a model, shear-banding micellar solution during shear startup and cessation. Phys. Rev. E 2014, 89, 11. [Google Scholar] [CrossRef]
- Wrede, O.; Reimann, Y.; Lulsdorf, S.; Emmrich, D.; Schneider, K.; Schmid, A.J.; Zauser, D.; Hannappel, Y.; Beyer, A.; Schweins, R.; et al. Volume phase transition kinetics of smart N-n-propylacrylamide microgels studied by time-resolved pressure jump small angle neutron scattering. Sci. Rep. 2018, 8, 13. [Google Scholar] [CrossRef]
- Terrill, N.J.; Fairclough, P.A.; Towns-Andrews, E.; Komanschek, B.U.; Young, R.J.; Ryan, A.J. Density fluctuations: The nucleation event in isotactic polypropylene crystallization. Polymer 1998, 39, 2381–2385. [Google Scholar] [CrossRef]
- Metze, M.; Barbe, S.; Reiche, A.; Kesting, A.; Schweins, R. A Neutron-Transparent Flow-Through Cell (NTFT-Cell) for the SANS investigation of microstructure evolution during industrial evaporative casting. J. Neutron Res. 2017, 19, 177–185. [Google Scholar] [CrossRef]
- Kipping, D.; Gahler, R.; Habicht, K. Small angle neutron scattering at very high time resolution: Principle and simulations of ‘TISANE’. Phys. Lett. A 2008, 372, 1541–1546. [Google Scholar] [CrossRef]
- Wiedenmann, A.; Keiderling, U.; Habicht, K.; Russina, M.; Gahler, R. Dynamics of field-induced ordering in magnetic colloids studied by new time-resolved small-angle neutron-scattering techniques. Phys. Rev. Lett. 2006, 97, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adlmann, F.A.; Gutfreund, P.; Ankner, J.F.; Browning, J.F.; Parizzi, A.; Vacaliuc, B.; Halbert, C.E.; Rich, J.P.; Dennison, A.J.C.; Wolff, M.R. Towards neutron scattering experiments with sub-millisecond time resolution. J. Appl. Crystallogr. 2015, 48, 220–226. [Google Scholar] [CrossRef]
- Levelut, A.M.; Guinier, A. X-ray Scattering by Point Defects. In Small Angle X-ray Scattering; Brumberger, H., Ed.; Gordon and Breach: New York, NY, USA, 1967. [Google Scholar]
- Olsson, A.; Hellsing, M.S.; Rennie, A.R. A holder to rotate sample cells to avoid sedimentation in small-angle neutron scattering and ultra small-angle neutron scattering experiments. Meas. Sci. Technol. 2013, 24, 6. [Google Scholar] [CrossRef]
- Leao, J.B.; Murphy, R.P.; Wagner, N.J.; Bleuel, M. Dynamic infrared sample controlled (DISCO) temperature for the tumbler cells for ultra small angle neutron scattering (USANS). J. Neutron Res. 2017, 19, 23–26. [Google Scholar] [CrossRef] [Green Version]
- Bras, W.; Derbyshire, G.E.; Devine, A.; Clark, S.M.; Cooke, J.; Komanschek, B.E.; Ryan, A.J. The Combination of Thermal-Analysis and Time-Resolved X-Ray Techniques—A Powerful Method for Materials Characterization. J. Appl. Crystallogr. 1995, 28, 26–32. [Google Scholar] [CrossRef]
- Russell, T.P.; Koberstein, J.T. Simultaneous Differential Scanning Calorimetry And Small-Angle X-Ray-Scattering. J. Polym. Sci. Part B-Polym. Phys. 1985, 23, 1109–1115. [Google Scholar] [CrossRef]
- Gilbert, B. Finite size effects on the real-space pair distribution function of nanoparticles. J. Appl. Crystallogr. 2008, 41, 554–562. [Google Scholar] [CrossRef]
- Oskolkova, M.Z.; Norrman, E.; Olsson, U. Study of the micelle-to-vesicle transition and smallest possible vesicle size by temperature-jumps. J. Colloid Interface Sci. 2013, 396, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Adelsberger, J.; Grillo, I.; Kulkarni, A.; Sharp, M.; Bivigou-Koumba, A.M.; Laschewsky, A.; Müller-Buschbaum, P.; Papadakis, C.M. Kinetics of aggregation in micellar solutions of thermoresponsive triblock copolymers—Influence of concentration, start and target temperatures. Soft Matter 2013, 9, 1685–1699. [Google Scholar] [CrossRef]
- Pullen, S.A.; Gilbert, E.P.; Olsen, S.R.; Lang, E.A.; Doolan, K.R. An in situ rapid heat-quench cell for small-angle neutron scattering. Meas. Sci. Technol. 2008, 19, 8. [Google Scholar] [CrossRef]
- Adelsberger, J.; Metwalli, E.; Diethert, A.; Grillo, I.; Bivigou-Koumba, A.M.; Laschewsky, A.; Muller-Buschbaum, P.; Papadakis, C.M. Kinetics of Collapse Transition and Cluster Formation in a Thermoresponsive Micellar Solution of P(S-b-NIPAM-b-S) Induced by a Temperature Jump. Macromol. Rapid Commun. 2012, 33, 254–259. [Google Scholar] [CrossRef]
- Dewers, T.A.; Heath, J.E.; Bryan, C.R.; Mang, J.T.; Hjelm, R.P.; Ding, M.; Taylor, M. Oedometric Small-Angle Neutron Scattering: In Situ Observation of Nanopore Structure During Bentonite Consolidation and Swelling in Dry and Hydrous CO2 Environments. Environ. Sci. Technol. 2018, 52, 3758–3768. [Google Scholar] [CrossRef]
- Stefanopoulos, K.L.; Youngs, T.G.A.; Sakurovs, R.; Ruppert, L.F.; Bahadur, J.; Melnichenko, Y.B. Neutron Scattering Measurements of Carbon Dioxide Adsorption in Pores within the Marcellus Shale: Implications for Sequestration. Environ. Sci. Technol. 2017, 51, 6515–6521. [Google Scholar] [CrossRef] [Green Version]
- Hjelm, R.P.; Taylor, M.A.; Frash, L.P.; Hawley, M.E.; Ding, M.; Xu, H.W.; Barker, J.; Olds, D.; Heath, J.; Dewers, T. Flow-through compression cell for small-angle and ultra-small-angle neutron scattering measurements. Rev. Sci. Instrum. 2018, 89, 9. [Google Scholar] [CrossRef]
- Gabke, A.; Kraineva, J.; Kohling, R.; Winter, R. Using pressure in combination with x-ray and neutron scattering techniques for studying the structure, stability and phase behaviour of soft condensed matter and biomolecular systems. J. Phys. Condens. Matter 2005, 17, S3077–S3092. [Google Scholar] [CrossRef]
- Teixeira, S.C.M.; Leao, J.B.; Gagnon, C.; McHugh, M.A. High pressure cell for Bio-SANS studies under sub-zero temperatures or heat denaturing conditions. J. Neutron Res. 2018, 20, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Pingali, S.V.; Smith, M.D.; Liu, S.-H.; Rawal, T.B.; Pu, Y.; Shah, R.; Evans, B.R.; Urban, V.S.; Davison, B.H.; Cai, C.M.; et al. Deconstruction of biomass enabled by local demixing of cosolvents at cellulose and lignin surfaces. Proc. Natl. Acad. Sci. USA 2020, 117, 16776–16781. [Google Scholar] [CrossRef]
- Niebuur, B.-J.; Chiappisi, L.; Zhang, X.; Jung, F.; Schulte, A.; Papadakis, C.M. Formation and Growth of Mesoglobules in Aqueous Poly(N-isopropylacrylamide) Solutions Revealed with Kinetic Small-Angle Neutron Scattering and Fast Pressure Jumps. ACS Macro Lett. 2018, 7, 1155–1160. [Google Scholar] [CrossRef]
- Ryan, A.J.; Bras, W.; Hermida-Merino, D.; Cavallo, D. The interaction between fundamental and industrial research and experimental developments in the field of polymer crystallization. J. Non-Cryst. Solids 2016, 451, 168–178. [Google Scholar] [CrossRef]
- Roozemond, P.C.; Ma, Z.; Cui, K.; Li, L.; Peters, G.W.M. Multimorphological Crystallization of Shish-Kebab Structures in Isotactic Polypropylene: Quantitative Modeling of Parent-Daughter Crystallization Kinetics. Macromolecules 2014, 47, 5152–5162. [Google Scholar] [CrossRef]
- Lindner, P.; Oberthur, R.C. Shear induced deformation of polystyrene coils in dilute-solution from small-angle neutron-scattering. 1. Shear gradient apparatus and 1st experimental results. Colloid Polym. Sci. 1985, 263, 443–453. [Google Scholar] [CrossRef]
- Eberle, A.P.R.; Porcar, L. Flow-SANS and Rheo-SANS applied to soft matter. Curr. Opin. Colloid Interface Sci. 2012, 17, 33–43. [Google Scholar] [CrossRef]
- Huang, G.R.; Wang, Y.Y.; Wu, B.; Wang, Z.; Do, C.; Smith, G.S.; Bras, W.; Porcar, L.; Falus, P.; Chen, W.R. Reconstruction of three-dimensional anisotropic structure from small-angle scattering experiments. Phys. Rev. E 2017, 96, 022612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porcar, L.; Pozzo, D.; Langenbucher, G.; Moyer, J.; Butler, P.D. Rheo-small-angle neutron scattering at the National Institute of Standards and Technology Center for Neutron Research. Rev. Sci. Instrum. 2011, 82, 7. [Google Scholar] [CrossRef] [Green Version]
- Velichko, E.; Tian, B.; Nikolaeva, T.; Koning, J.; van Duynhoven, J.; Bouwman, W.G. A versatile shear cell for investigation of structure of food materials under shear. Colloids Surf. A-Physicochem. Eng. Asp. 2019, 566, 21–28. [Google Scholar] [CrossRef]
- Vermant, J.; Solomon, M.J. Flow-induced structure in colloidal suspensions. J. Phys. Condens. Matter 2005, 17, R187–R216. [Google Scholar] [CrossRef]
- Helgeson, M.E.; Vasquez, P.A.; Kaler, E.W.; Wagner, N.J. Rheology and spatially resolved structure of cetyltrimethylammonium bromide wormlike micelles through the shear banding transition. J. Rheol. 2009, 53, 727–756. [Google Scholar] [CrossRef]
- Nusser, K.; Neueder, S.; Schneider, G.J.; Meyer, M.; Pyckhout-Hintzen, W.; Willner, L.; Radulescu, A.; Richter, D. Conformations of silica− poly (ethylene− propylene) nanocomposites. Macromolecules 2010, 43, 9837–9847. [Google Scholar] [CrossRef]
- Gasnier, A.; Royal, G.; Terech, P. Metallo-Supramolecular Gels Based on a Multitopic Cyclam Bis-Terpyridine Platform. Langmuir 2009, 25, 8751–8762. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Iwashita, T.; Porcar, L.; Wang, Y.Y.; Liu, Y.; Sanchez-Diaz, L.E.; Wu, B.; Huang, G.R.; Egami, T.; Chen, W.R. Local elasticity in nonlinear rheology of interacting colloidal glasses revealed by neutron scattering and rheometry. Phys. Chem. Chem. Phys. 2019, 21, 38–45. [Google Scholar] [CrossRef] [Green Version]
- Liberatore, M.W.; Nettesheim, F.; Wagner, N.J.; Porcar, L. Spatially resolved small-angle neutron scattering in the 1-2 plane: A study of shear-induced phase-separating wormlike micelles. Phys. Rev. E 2006, 73, 020504. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Helgeson, M.E. Shear-induced clustering of Brownian colloids in associative polymer networks at moderate Peclet number. Phys. Rev. Fluids 2016, 1, 19. [Google Scholar] [CrossRef]
- Sharma, J.; King, S.M.; Bohlin, L.; Clarke, N. Apparatus for simultaneous rheology and small-angle neutron scattering from high-viscosity polymer melts and blends. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrometers Detect. Assoc. Equip. 2010, 620, 437–444. [Google Scholar] [CrossRef] [Green Version]
- Rexeisen, E.L.; Fan, W.; Pangburn, T.O.; Taribagil, R.R.; Bates, F.S.; Lodge, T.P.; Tsapatsis, M.; Kokkoli, E. Self-Assembly of Fibronectin Mimetic Peptide-Amphiphile Nanofibers. Langmuir 2010, 26, 1953–1959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasa, L.A.; Yearley, E.J.; Welch, C.F.; Taylor, M.A.; Gilbertson, R.D.; Hammeter, C.; Majewski, J.; Hjelm, R.P. The Los Alamos Neutron Science Center neutron rheometer in the cone and plate geometry to examine tethered polymers/polymer melt interfaces via neutron reflectivity. Rev. Sci. Instrum. 2010, 81, 6. [Google Scholar] [CrossRef]
- Corvis, Y.; Barre, L.; Jestin, J.; Gummel, J.; Cousin, F. Asphaltene adsorption mechanism under shear flow probed by in situ neutron reflectivity measurements. Eur. Phys. J. Spec. Top. 2012, 213, 295–302. [Google Scholar] [CrossRef]
- Hamley, I.W.; Burholt, S.; Hutchinson, J.; Castelletto, V.; da Silva, E.R.; Alves, W.; Gutfreund, P.; Porcar, L.; Dattani, R.; Hermida-Merino, D.; et al. Shear Alignment of Bola-Amphiphilic Arginine-Coated Peptide Nanotubes. Biomacromolecules 2017, 18, 141–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muller, R.; Picot, C.; Zang, Y.H.; Froelich, D. Polymer-chain conformation in the melt during steady elongational flow as measured by sans—Temporary network model. Macromolecules 1990, 23, 2577–2582. [Google Scholar] [CrossRef]
- Ruocco, N.; Auhl, D.; Bailly, C.; Lindner, P.; Pyckhout-Hintzen, W.; Wischnewski, A.; Leal, L.G.; Hadjichristidis, N.; Richter, D. Branch Point Withdrawal in Elongational Startup Flow by Time-Resolved Small Angle Neutron Scattering. Macromolecules 2016, 49, 4330–4339. [Google Scholar] [CrossRef]
- Macosko, C.W.; Mewis, J. Suspension Rheology; Wiley-VCH: New York, NY, USA, 1994. [Google Scholar]
- Camargo, R.; Macosko, C.; Tirrell, M.; Wellinghoff, S. Phase separation studies in RIM polyurethanes catalyst and hard segment crystallinity effects. Polymer 1985, 26, 1145–1154. [Google Scholar] [CrossRef]
- Inkson, N.J.; McLeish, T.C.B.; Harlen, O.G.; Groves, D.J. Predicting low density polyethylene melt rheology in elongational and shear flows with "pom-pom" constitutive equations. J. Rheol. 1999, 43, 873–896. [Google Scholar] [CrossRef]
- Bent, J.F.; Richards, R.W.; Gough, T.D. Recirculation cell for the small-angle neutron scattering investigation of polymer melts in flow. Rev. Sci. Instrum. 2003, 74, 4052–4057. [Google Scholar] [CrossRef] [Green Version]
- Bent, J.; Hutchings, L.R.; Richards, R.W.; Gough, T.; Spares, R.; Coates, P.D.; Grillo, I.; Harlen, O.G.; Read, D.J.; Graham, R.S.; et al. Neutron-mapping polymer flow: Scattering, flow visualization, and molecular theory. Science 2003, 301, 1691–1695. [Google Scholar] [CrossRef] [Green Version]
- Graham, R.S.; Bent, J.; Hutchings, L.R.; Richards, R.W.; Groves, D.J.; Embery, J.; Nicholson, T.M.; McLeish, T.C.B.; Likhtman, A.E.; Harlen, O.G.; et al. Measuring and predicting the dynamics of linear monodisperse entangled polymers in rapid flow through an abrupt contraction. A small angle neutron scattering study. Macromolecules 2006, 39, 2700–2709. [Google Scholar]
- McLeish, T.C.B.; Clarke, N.; de Luca, E.; Hutchings, L.R.; Graham, R.S.; Gough, T.; Grillo, I.; Fernyhough, C.M.; Chambon, P. Neutron flow-mapping: Multiscale modelling opens a new experimental window. Soft Matter 2009, 5, 4426–4432. [Google Scholar] [CrossRef]
- Lee, J.S.; Dylla-Spears, R.; Teclemariam, N.P.; Muller, S.J. Microfluidic four-roll mill for all flow types. Appl. Phys. Lett. 2007, 90, 3. [Google Scholar] [CrossRef]
- Taylor, G.I. The formation of emulsions in definable fields of flow. Proc. R. Soc. A 1934, 146, 501–523. [Google Scholar]
- Corona, P.T.; Ruocco, N.; Weigandt, K.M.; Leal, L.G.; Helgeson, M.E. Probing flow-induced nanostructure of complex fluids in arbitrary 2D flows using a fluidic four-roll mill (FFoRM). Sci. Rep. 2018, 8, 18. [Google Scholar] [CrossRef] [Green Version]
- Straube, E.; Urban, V.; Pyckhouthintzen, W.; Richter, D. Sans investigations of topological constraints and microscopic deformations in rubberelastic networks. Macromolecules 1994, 27, 7681–7688. [Google Scholar] [CrossRef]
- Butler, M.F.; Donald, A.M.; Bras, W.; Mant, G.R.; Derbyshire, G.E.; Ryan, A.J. A real-time simultaneous small-angle and wide-angle X-ray-scattering study of in-situ deformation of isotropic polyethylene. Macromolecules 1995, 28, 6383–6393. [Google Scholar] [CrossRef]
- Coutry, S.; Spells, S.J. Molecular changes on drawing isotopic blends of polyethylene and ethylene copolymers: 1. Static and time-resolved sans studies. Polymer 2003, 44, 1949–1956. [Google Scholar] [CrossRef]
- Wiyatno, W.; Fuller, G.G.; Pople, J.A.; Gast, A.P.; Chen, Z.R.; Waymouth, R.M.; Myers, C.L. Component stress-strain behavior and small-angle neutron scattering investigation of stereoblock elastomeric polypropylene. Macromolecules 2003, 36, 1178–1187. [Google Scholar] [CrossRef]
- Engqvist, J.; Hall, S.A.; Wallin, M.; Ristinmaa, M.; Plivelic, T.S. Multi-scale Measurement of (Amorphous) Polymer Deformation: Simultaneous X-ray Scattering, Digital Image Correlation and In-situ Loading. Exp. Mech. 2014, 54, 1373–1383. [Google Scholar] [CrossRef]
- Wagner, J.A.; Patil, S.P.; Greving, I.; Lammel, M.; Gkagkas, K.; Seydel, T.; Muller, M.; Markert, B.; Grater, F. Stress-induced long-range ordering in spider silk. Sci. Rep. 2017, 7, 6. [Google Scholar] [CrossRef] [Green Version]
- Stribeck, N.; Nochel, U.; Funari, S.S.; Schubert, T. Tensile tests of polypropylene monitored by SAXS. Comparing the stretch-hold technique to the dynamic technique. J. Polym. Sci. Part B-Polym. Phys. 2008, 46, 721–726. [Google Scholar] [CrossRef] [Green Version]
- Dokter, W.H.; Vangarderen, H.F.; Beelen, T.P.M.; Vansanten, R.A.; Bras, W. Homogeneous Versus Heterogeneous Zeolite Nucleation. Angew. Chem. -Int. Ed. Engl. 1995, 34, 73–75. [Google Scholar] [CrossRef]
- Grillo, I. Applications of stopped-flow in SAXS and SANS. Curr. Opin. Colloid Interface Sci. 2009, 14, 402–408. [Google Scholar] [CrossRef]
- Virtanen, O.L.J.; Kather, M.; Meyer-Kirschner, J.; Melle, A.; Radulescu, A.; Viell, J.; Mitsos, A.; Pich, A.; Richtering, W. Direct Monitoring of Microgel Formation during Precipitation Polymerization of N-Isopropylacrylamide Using in Situ SANS. ACS Omega 2019, 4, 3690–3699. [Google Scholar] [CrossRef] [Green Version]
- Uhríková, D.; Teixeira, J.; Hubčík, L.; Búcsi, A.; Kondela, T.; Murugova, T.; Ivankov, O.I. Lipid based drug delivery systems: Kinetics by SANS. J. Phys. Conf. Ser. 2017, 848, 012007. [Google Scholar] [CrossRef] [Green Version]
- Hayward, D.W.; Chiappisi, L.; Prevost, S.; Schweins, R.; Gradzielski, M. A Small-Angle Neutron Scattering Environment for In-Situ Observation of Chemical Processes. Sci. Rep. 2018, 8, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Melnichenko, Y.B.; He, L.L.; Sakurovs, R.; Kholodenko, A.L.; Blach, T.; Mastalerz, M.; Radlinski, A.P.; Cheng, G.; Mildner, D.F.R. Accessibility of pores in coal to methane and carbon dioxide. Fuel 2012, 91, 200–208. [Google Scholar] [CrossRef]
- Woods, H.M.; Silva, M.; Nouvel, C.; Shakesheff, K.M.; Howdle, S.M. Materials processing in supercritical carbon dioxide: Surfactants, polymers and biomaterials. J. Mater. Chem. 2004, 14, 1663–1678. [Google Scholar] [CrossRef]
- Melnichenko, Y.B.; Kiran, E.; Wignall, G.D.; Heath, K.D.; Salaniwal, S.; Cochran, H.D. Stamm, Pressure- and temperature-induced transitions in solutions of poly(dimethylsiloxane) in supercritical carbon dioxide. M. Macromolecules 1999, 32, 5344–5347. [Google Scholar] [CrossRef]
- Muller, A.; Putz, Y.; Oberhoffer, R.; Becker, N.; Strey, R.; Wiedenmann, A.; Sottmann, T. Kinetics of pressure induced structural changes in super- or near-critical CO2-microemulsions. Phys. Chem. Chem. Phys. 2014, 16, 18092–18097. [Google Scholar] [CrossRef] [PubMed]
- Putz, Y.; Grassberger, L.; Lindner, P.; Schweins, R.; Strey, R.; Sottmann, T. Unexpected efficiency boosting in CO2-microemulsions: A cyclohexane depletion zone near the fluorinated surfactants evidenced by a systematic SANS contrast variation study. Phys. Chem. Chem. Phys. 2015, 17, 6122–6134. [Google Scholar] [CrossRef] [PubMed]
- Hermida-Merino, D.; Portale, G.; Fields, P.; Wilson, R.; Bassett, S.P.; Jennings, J.; Dellar, M.; Gommes, C.; Howdle, S.M.; Vrolijk, B.C. A high pressure cell for supercritical CO2 on-line chemical reactions studied with x-ray techniques. Rev. Sci. Instrum. 2014, 85, 093905. [Google Scholar] [CrossRef] [PubMed]
- Jordan, A.; Jacques, M.; Merrick, C.; Devos, J.; Forsyth, V.T.; Porcar, L.; Martel, A. SEC-SANS: Size exclusion chromatography combined in situ with small-angle neutron scattering. J. Appl. Crystallogr. 2016, 49, 2015–2020. [Google Scholar] [CrossRef] [Green Version]
- Koch, M.H.J.; Sayers, Z.; Sicre, P.; Svergun, D. A synchrotron-radiation electric-field X-ray solution scattering study of dna at very-low ionic-strength. Macromolecules 1995, 28, 4904–4907. [Google Scholar] [CrossRef]
- Xu, T.; Zhu, Y.; Gido, S.P.; Russell, T.P. Electric Field Alignment of Symmetric Diblock Copolymer Thin Films. Macromolecules 2004, 37, 2625–2629. [Google Scholar] [CrossRef]
- Pester, C.; Ruppel, M.; Schoberth, H.G.; Schmidt, K.; Liedel, C.; van Rijn, P.; Schindler, K.A.; Hiltl, S.; Czubak, T.; Mays, J.; et al. Piezoelectric Properties of Non-Polar Block Copolymers. Adv. Mater. 2011, 23, 4047–4052. [Google Scholar] [CrossRef]
- Boker, A.; Ruppel, M.; Lindner, P.; Urban, V.S.; Schmidt, K.; Schoberth, H. SANS Study on the Phase Behaviour of Block Copolymers in the Presence of an External Electric Field; Institut Laue-Langevin (ILL) ILL User Club: Grenoble, France, 2009. [Google Scholar]
- McMullan, J.M.; Wagner, N.J. Directed self-assembly of colloidal crystals by dielectrophoretic ordering observed with small angle neutron scattering (SANS). Soft Matter 2010, 6, 5443–5450. [Google Scholar] [CrossRef]
- Li, D.S.; Lee, Y.-T.; Xi, Y.; Pelivanov, I.; O’Donnell, M.; Pozzo, L.D. A small-angle scattering environment for in situ ultrasound studies. Soft Matter 2018, 14, 5283–5293. [Google Scholar] [CrossRef] [PubMed]
- Hamley, I.W.; Castelletto, V.; Lu, Z.B.; Imrie, C.T.; Itoh, T.; Al-Hussein, M. Interplay between Smectic Ordering and Microphase Separation in a Series of Side-Group Liquid-Crystal Block Copolymers. Macromolecules 2004, 37, 4798–4807. [Google Scholar] [CrossRef]
- Hocine, S.; Brulet, A.; Jia, L.; Yang, J.; Di Cicco, A.; Bouteiller, L.; Li, M.H. Structural changes in liquid crystal polymer vesicles induced by temperature variation and magnetic fields. Soft Matter 2011, 7, 2613–2623. [Google Scholar] [CrossRef]
- Nieh, M.P.; Glinka, C.J.; Krueger, S.; Prosser, R.S.; Katsaras, J. SANS study of the structural phases of magnetically alignable lanthanide-doped phospholipid mixtures. Langmuir 2001, 17, 2629–2638. [Google Scholar] [CrossRef]
- van der Beek, D.; Petukhov, A.V.; Davidson, P.; Ferre, J.; Jamet, J.P.; Wensink, H.H.; Vroege, G.J.; Bras, W.; Lekkerkerker, H.N.W. Magnetic-field-induced orientational order in the isotropic phase of hard colloidal platelets. Phys. Rev. E 2006, 73, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCulloch, B.; Portale, G.; Bras, W.; Segalman, R.A. Increased Order-Disorder Transition Temperature for a Rod-Coil Block Copolymer in the Presence of a Magnetic Field. Macromolecules 2011, 44, 7503–7507. [Google Scholar] [CrossRef]
- Bras, W.; Emsley, J.W.; Levine, Y.K.; Luckhurst, G.R.; Seddon, J.M.; Timimi, B.A. Field-induced alignment of a smectic-A phase: A time-resolved X-ray diffraction investigation. J. Chem. Phys. 2004, 121, 4397–4413. [Google Scholar] [CrossRef] [PubMed]
- Brimicombe, P.D.; Siemianowski, S.D.; Jaradat, S.; Levine, Y.K.; Thompson, P.; Bras, W.; Gleeson, H.F. Time-resolved x-ray studies of the dynamics of smectic-A layer realignment by magnetic fields. Phys. Rev. E 2009, 79, 031706. [Google Scholar] [CrossRef]
- Torbet, J. Solution behavior of DNA studied with magnetically induced birefringence. Methods Enzym. 1992, 211, 518–532. [Google Scholar]
- Torbet, J.; Dickens, M.J. Orientation of Skeletal-Muscle Actin in Strong Magnetic-Fields. FEBS Lett. 1984, 173, 403–406. [Google Scholar] [CrossRef] [Green Version]
- Liebi, M.; van Rhee, P.G.; Christianen, P.C.M.; Kohlbrecher, J.; Fischer, P.; Walde, P.; Windhab, E.J. Alignment of Bicelles Studied with High-Field Magnetic Birefringence and Small-Angle Neutron Scattering Measurements. Langmuir 2013, 29, 3467–3473. [Google Scholar] [CrossRef] [PubMed]
- Holmes, A.T.; Walsh, G.R.; Blackburn, E.; Forgan, E.M.; Savey-Bennett, M. A 17 T horizontal field cryomagnet with rapid sample change designed for beamline use. Rev. Sci. Instrum. 2012, 83, 023904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linden, P.J.E.M.v.d.; Mathon, O.; Strohm, C.; Sikora, M. Miniature pulsed magnet system for synchrotron x-ray measurements. Rev. Sci. Instrum. 2008, 79, 075104. [Google Scholar] [CrossRef] [PubMed]
- Duc, F.; Fabrèges, X.; Roth, T.; Detlefs, C.; Frings, P.; Nardone, M.; Billette, J.; Lesourd, M.; Zhang, L.; Zitouni, A.; et al. A 31 T split-pair pulsed magnet for single crystal x-ray diffraction at low temperature. Rev. Sci. Instrum. 2014, 85, 053905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frings, P.; Vanacken, J.; Detlefs, C.; Duc, F.; Lorenzo, J.E.; Nardone, M.; Billette, J.; Zitouni, A.; Bras, W.; Rikken, G.L.J.A. Synchrotron x-ray powder diffraction studies in pulsed magnetic fields. Rev. Sci. Instrum. 2006, 77, 063903. [Google Scholar] [CrossRef]
- Duc, F.; Tonon, X.; Billette, J.; Rollet, B.; Knafo, W.; Bourdarot, F.; Béard, J.; Mantegazza, F.; Longuet, B.; Lorenzo, J.E.; et al. 40-Tesla pulsed-field cryomagnet for single crystal neutron diffraction. Rev. Sci. Instrum. 2018, 89, 053905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vesperinas, A.; Eastoe, J.; Wyatt, P.; Grillo, I.; Heenan, R.K.; Richards, J.M.; Bell, G.A. Photoinduced phase separation. J. Am. Chem. Soc. 2006, 128, 1468–1469. [Google Scholar] [CrossRef]
- Tabor, R.F.; Oakley, R.J.; Eastoe, J.; Faul, C.F.J.; Grillo, I.; Heenan, R.K. Reversible light-induced critical separation. Soft Matter 2009, 5, 78–80. [Google Scholar] [CrossRef]
- Oh, H.; Ketner, A.M.; Heymann, R.; Kesselman, E.; Danino, D.; Falvey, D.E.; Raghavan, S.R. A simple route to fluids with photo-switchable viscosities based on a reversible transition between vesicles and wormlike micelles. Soft Matter 2013, 9, 5025–5033. [Google Scholar] [CrossRef]
- Morgan, B.; Dadmun, M.D. The role of incident light intensity, wavelength, and exposure time in the modification of conjugated polymer structure in solution. Eur. Polym. J. 2017, 89, 272–280. [Google Scholar] [CrossRef] [Green Version]
- Morgan, B.; Dadmun, M.D. Illumination of Conjugated Polymer in Solution Alters Its Conformation and Thermodynamics. Macromolecules 2016, 49, 3490–3496. [Google Scholar] [CrossRef]
- Bras, W.; Stanley, H. Unexpected effects in non crystalline materials exposed to X-ray radiation. J. Non-Cryst. Solids 2016, 451, 153–160. [Google Scholar] [CrossRef]
- Liberton, M.; Page, L.E.; O’Dell, W.B.; O’Neill, H.; Mamontov, E.; Urban, V.S.; Pakrasi, H.B. Organization and Flexibility of Cyanobacterial Thylakoid Membranes Examined by Neutron Scattering. J. Biol. Chem. 2013, 288, 3632–3640. [Google Scholar] [CrossRef] [Green Version]
- Perera, S.; Chawla, U.; Shrestha, U.R.; Bhowmik, D.; Struts, A.V.; Qian, S.; Chu, X.Q.; Brown, M.F.J. Small-Angle Neutron Scattering Reveals Energy Landscape for Rhodopsin Photoactivation. Phys. Chem. Lett. 2018, 9, 7064–7071. [Google Scholar] [CrossRef] [PubMed]
- Whittaker, A.G.; Harrison, A.; Oakley, G.S.; Youngson, I.D.; Heenan, R.K.; King, S.M. Preliminary experiments on apparatus for in situ studies of microwave-driven reactions by small angle neutron scattering. Rev. Sci. Instrum. 2001, 72, 173–176. [Google Scholar] [CrossRef]
- Toolan, D.T.W.; Adlington, K.; Isakova, A.; Kalamiotis, A.; Mokarian-Tabari, P.; Dimitrakis, G.; Dodds, C.; Arnold, T.; Terrill, N.J.; Bras, W.; et al. Selective molecular annealing: In situ small angle X-ray scattering study of microwave-assisted annealing of block copolymers. Phys. Chem. Chem. Phys. 2017, 19, 20412–20419. [Google Scholar] [CrossRef] [Green Version]
- Greaves, G.N.; Wilding, M.C.; Fearn, S.; Langstaff, D.; Kargl, F.; Cox, S.; Van, Q.V.; Majerus, O.; Benmore, C.J.; Weber, R.; et al. Detection of first-order liquid/liquid phase transitions in yttrium oxide-aluminum oxide melts. Science 2008, 322, 566–570. [Google Scholar] [CrossRef] [Green Version]
- Hennet, L.; Cristiglio, V.; Kozaily, J.; Pozdnyakova, I.; Fischer, H.E.; Bytchkov, A.; Drewitt, J.W.E.; Leydier, M.; Thiaudiere, D.; Gruner, S.; et al. Aerodynamic levitation and laser heating: Applications at synchrotron and neutron sources. Eur. Phys. J. -Spec. Top. 2011, 196, 151–165. [Google Scholar] [CrossRef]
- Weber, J.K.R.; Rey, C.A.; Neuefeind, J.; Benmore, C.J. Acoustic levitator for structure measurements on low temperature liquid droplets. Rev. Sci. Instrum. 2009, 80, 083904. [Google Scholar] [CrossRef]
- Cristiglio, V.; Grillo, I.; Fomina, M.; Wien, F.; Shalaev, E.; Novikov, A.; Brassamin, S.; Refregiers, M.; Perez, J.; Hennet, L. Combination of acoustic levitation with small angle scattering techniques and synchrotron radiation circular dichroism. Application to the study of protein solutions. Biochim. Biophys. Acta-Gen. Subj. 2017, 1861, 3693–3699. [Google Scholar] [CrossRef] [PubMed]
- Krauss, S.W.; Schweins, R.; Magerl, A.; Zobel, M. Free-film small-angle neutron scattering: A novel container-free in situ sample environment with minimized H/D exchange. J. Appl. Crystallogr. 2019, 52, 284–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, J.B.A.; Le Garrec, J.L.; Florescu-Mitchell, A.I.; di Stasio, S. Small-angle neutron scattering study of soot particles in an ethylene-air diffusion flame. Combust. Flame 2006, 145, 80–87. [Google Scholar] [CrossRef]
- Lee, Y.L.; Ristic, R.I.; DeMatos, L.L.; Martin, C.M. Crystallisation Pathways of Polymorphic Triacylglycerols Induced by Mechanical Energy. XIV Int. Conf. Small-Angle Scatt. 2010, 247, 012049. [Google Scholar] [CrossRef]
- Gupta, S.; Bleuel, M.; Schneider, G.J. A new ultrasonic transducer sample cell for in situ small-angle scattering experiments. Rev. Sci. Instrum. 2018, 89, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenspan, L. Humidity fixed-points of binary saturated aqueous-solutions. J. Res. Natl. Bur. Stand. Sect. A-Phys. Chem. 1977, 81, 89–96. [Google Scholar] [CrossRef]
- Kim, M.H.; Glinka, C.J.; Carter, R.N. In situ vapor sorption apparatus for small-angle neutron scattering and its application. Rev. Sci. Instrum. 2005, 76, 10. [Google Scholar] [CrossRef]
- Plaza, N.Z.; Pingali, S.V.; Qian, S.; Heller, W.T.; Jakes, J.E. Informing the improvement of forest products durability using small angle neutron scattering. Cellulose 2016, 23, 1593–1607. [Google Scholar] [CrossRef]
- Qian, S.; Rai, D.K. Grazing-Angle Neutron Diffraction Study of the Water Distribution in Membrane Hemifusion: From the Lamellar to Rhombohedral Phase. J. Phys. Chem. Lett. 2018, 9, 5778–5784. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.J.; An, K.; Gao, C.Y.; Heller, W.T.; Chen, X. A portable hydro-thermo-mechanical loading cell for in situ small angle neutron scattering studies of proton exchange membranes. Rev. Sci. Instrum. 2013, 84, 6. [Google Scholar] [CrossRef]
- Putra, A.; Iwase, H.; Yamaguchi, D.; Koizumi, S.; Maekawa, Y.; Matsubayashi, M.; Hashimoto, T. In-situ observation of dynamic water behavior in polymer electrolyte fuel cell by combined method of Small-Angle Neutron Scattering and Neutron Radiography. J. Phys. Conf. Ser. 2010, 247, 012044. [Google Scholar] [CrossRef]
- Koizumi, S.; Ueda, S.; Ananda, P.; Tsutsumi, Y. Heterogeneous cell performance of polymer electrolyte fuel cell at high current operation: Respiration mode as non-equilibrium phenomenon. Aip Adv. 2019, 9, 9. [Google Scholar] [CrossRef] [Green Version]
- Ueda, S.; Koizumi, S.; Tsutsumi, Y. Initial conditioning of a polymer electrolyte fuel cells: The relationship between microstructure development and cell performance, investigated by small-angle neutron scattering. Results Phys. 2019, 12, 1871–1879. [Google Scholar] [CrossRef]
- Jafta, C.J.; Sun, X.G.; Veith, G.M.; Jensen, G.V.; Mahurin, S.M.; Paranthaman, M.P.; Dai, S.; Bridges, C.A. Probing microstructure and electrolyte concentration dependent cell chemistry via operando small angle neutron scattering. Energy Environ. Sci. 2019, 12, 1866–1877. [Google Scholar] [CrossRef]
- Hattendorff, J.; Seidlmayer, S.; Gasteiger, H.A.; Gilles, R. Li-ion half-cells studied operando during cycling by small-angle neutron scattering. J. Appl. Crystallogr. 2020, 53, 210–221. [Google Scholar] [CrossRef] [Green Version]
- Djire, A.; Pande, P.; Deb, A.; Siegel, J.B.; Ajenifujah, O.T.; He, L.L.; Sleightholme, A.E.; Rasmussen, P.G.; Thompson, L.T. Unveiling the pseudocapacitive charge storage mechanisms of nanostructured vanadium nitrides using in-situ analyses. Nano Energy 2019, 60, 72–81. [Google Scholar] [CrossRef]
- Bras, W.; Ryan, A.J. Sample environments and techniques combined with Small Angle X-ray Scattering. Adv. Colloid Interface Sci. 1998, 75, 1–43. [Google Scholar] [CrossRef]
- Bras, W.; Koizumi, S.; Terrill, N.J. Beyond simple small-angle X-ray scattering: Developments in online complementary techniques and sample environments. IUCrJ 2014, 1, 478–491. [Google Scholar] [CrossRef] [Green Version]
- Pullen, S.A.; Booth, N.; Olsen, S.R.; Day, B.; Franceschini, F.; Mannicke, D.; Gilbert, E.P. Design and implementation of a differential scanning calorimeter for the simultaneous measurement of small angle neutron scattering. Meas. Sci. Technol. 2014, 25, 8. [Google Scholar] [CrossRef]
- Scalambra, F.; Rudic, S.; Romerosa, A. Molecular Insights into Bulk and Porous kappa P-2,N-PTA Metal-Organic Polymers by Simultaneous Raman Spectroscopy and Inelastic Neutron Scattering. Eur. J. Inorg. Chem. 2019, 8, 1155–1161. [Google Scholar] [CrossRef]
- Adams, M.A.; Parker, S.F.; Fernandez-Alonso, F.; Cutler, D.J.; Hodges, C.; King, A. Simultaneous neutron scattering and Raman scattering. Appl. Spectrosc. 2009, 63, 727–732. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Barron, C.R.; Zeng, Y.M.; Schaefer, J.J.; Eberle, A.P.R.; Lodge, T.P.; Bates, F.S. Simultaneous Neutron Scattering and Raman Scattering. Macromolecules 2017, 50, 3627–3636. [Google Scholar]
- Bryant, G.K.; Gleeson, H.F.; Ryan, A.J.; Fairclough, J.P.A.; Bogg, D.; Goossens, J.G.P.; Bras, W. Raman spectroscopy combined with small angle x-ray scattering and wide angle x-ray scattering as a tool for the study of phase transitions in polymers. Rev. Sci. Instrum. 1998, 69, 2114. [Google Scholar] [CrossRef] [Green Version]
- Wurm, A.; Soliman, R.; Goossens, J.G.P.; Bras, W.; Schick, C. Evidence of pre-crystalline-order in super-cooled polymer melts revealed from simultaneous dielectric spectroscopy and SAXS. J. Non-Cryst. Solids 2005, 351, 2773–2779. [Google Scholar] [CrossRef]
- Jimenez-Ruiz, M.; Sanz, A.; Nogales, A.; Ezquerra, T.A. Experimental setup for simultaneous measurements of neutron diffraction and dielectric spectroscopy during crystallization of liquids. Rev. Sci. Instrum. 2005, 76, 043901. [Google Scholar] [CrossRef] [Green Version]
- Richards, J.J.; Wagner, N.J.; Butler, P.D. A strain-controlled RheoSANS instrument for the measurement of the microstructural, electrical, and mechanical properties of soft materials. Rev. Sci. Instrum. 2017, 88, 10. [Google Scholar] [CrossRef] [PubMed]
- Peterson, P.F.; Campbell, S.I.; Reuter, M.A.; Taylor, R.J.; Zikovsky, J. Event-based processing of neutron scattering data. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrometers Detect. Assoc. Equip. 2015, 803, 24–28. [Google Scholar] [CrossRef] [Green Version]
- Kaneko, F.; Seto, N.; Sato, S.; Radulescu, A.; Schiavone, M.M.; Allgaier, J.; Ute, K. Development of a Simultaneous SANS/FTIR Measuring System. Chem. Lett. 2015, 44, 497–499. [Google Scholar] [CrossRef] [Green Version]
- Kaneko, F.; Seto, N.; Sato, S.; Radulescu, A.; Schiavone, M.M.; Allgaier, J.; Ute, K. Simultaneous small-angle neutron scattering and Fourier transform infrared spectroscopic measurements on cocrystals of syndiotactic polystyrene with polyethylene glycol dimethyl ethers. J. Appl. Crystallogr. 2016, 49, 1420–1427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bras, W.; Derbyshire, G.E.; Bogg, D.; Cooke, J.; Elwell, M.J.; Komanschek, B.U.; Naylor, S.; Ryan, A.J. Simultaneous Studies of Reaction Kinetics and Structure Development in Polymer Processing. Science 1995, 267, 996–999. [Google Scholar] [CrossRef] [PubMed]
- Hongladarom, K.; Ugaz, V.M.; Cinader, D.K.; Burghardt, W.R.; Quintana, J.P.; Hsiao, B.S.; Dadmun, M.D.; Hamilton, W.A.; Butler, P.D. X-ray scattering, and neutron scattering measurements of molecular orientation in sheared liquid crystal polymer solutions. Macromolecules 1996, 29, 5346–5355. [Google Scholar] [CrossRef]
- Fernandez-Ballester, L.; Gough, T.; Meneau, F.; Bras, W.; Ania, F.; Balta-Calleja, F.J.; Kornfield, J.A. Simultaneous birefringence, small-and wide-angle X-ray scattering to detect precursors and characterize morphology development during flow-induced crystallization of polymers. J. Synchrotron Radiat. 2008, 15, 185–190. [Google Scholar] [CrossRef]
- Lo Celso, F.; Triolo, A.; Triolo, F.; Thiyagarajan, P.; Amenitsch, H.; Steinhart, M.; Kriechbaum, M.; DeSimone, J.M.; Triolo, R. A combined small-angle neutron and X-ray scattering study of block copolymers micellisation in supercritical carbon dioxide. J. Appl. Crystallogr. 2003, 36, 660–663. [Google Scholar] [CrossRef]
- Mao, Y.M.; Liu, K.; Zhan, C.B.; Geng, L.H.; Chu, B.; Hsiao, B.S. Characterization of Nanocellulose Using Small-Angle Neutron, X-ray, and Dynamic Light Scattering Techniques. J. Phys. Chem. B 2017, 121, 1340–1351. [Google Scholar] [CrossRef]
- Liu, D.; Li, X.Y.; Song, H.T.; Wang, P.C.; Chen, J.; Tian, Q.; Sun, L.W.; Chen, L.; Chen, B.; Gong, J.; et al. Hierarchical structure of MWCNT reinforced semicrystalline HDPE composites: A contrast matching study by neutron and X-ray scattering. Eur. Polym. J. 2018, 99, 18–26. [Google Scholar] [CrossRef]
- Metwalli, E.; Götz, K.; Lages, S.; Bär, K.; Zech, T.; Noll, D.M.; Schuldes, I.; Schindler, T.; Prihoda, A.; Lang, H.; et al. A novel experimental approach for nanostructure analysis: Simultaneous small-angle X-ray and neutron scattering. arXiv 2020, arXiv:2003.12585v1. [Google Scholar] [CrossRef]
- Romer, S.; Urban, C.; Lobaskin, V.; Scheffold, F.; Stradner, A.; Kohlbrecher, J.; Schurtenberger, P. Simultaneous light and small-angle neutron scattering on aggregating concentrated colloidal suspensions. J. Appl. Crystallogr. 2003, 36, 1–6. [Google Scholar] [CrossRef]
- Doutch, I.; Bason, M.; Franceschini, F.; James, K.; Clowes, D.; Gilbert, E.P. Structural changes during starch pasting using simultaneous Rapid Visco Analysis and small-angle neutron scattering. Carbohydr. Polym. 2012, 88, 1061–1071. [Google Scholar] [CrossRef]
- Lopez, C.G.; Watanabe, T.; Martel, A.; Porcar, L.; Cabral, J.T. Microfluidic-SANS: Flow processing of complex fluids. Sci. Rep. 2015, 5, 7727. [Google Scholar] [CrossRef] [Green Version]
- Noda, I. Frontiers of Two-Dimensional Correlation Spectroscopy. Part 1. New concepts and noteworthy developments. J. Mol. Struct. 2014, 1069, 3–22. [Google Scholar]
- Noda, I. Frontiers of two-dimensional correlation spectroscopy. Part 2. Perturbation methods, fields of applications, and types of analytical probes. J. Mol. Struct. 2014, 1069, 23–49. [Google Scholar] [CrossRef]
- Smirnova, D.S.; Kornfield, J.A.; Lohse, D.J. Morphology Development in Model Polyethylene via Two-Dimensional Correlation Analysis. Macromolecules 2011, 44, 6836–6848. [Google Scholar] [CrossRef]
- Haas, S.; Plivelic, T.S.; Dicko, C. Combined SAXS/UV-vis/Raman as a Diagnostic and Structure Resolving Tool in Materials and Life Sciences Applications. J. Phys. Chem. B 2014, 118, 2264–2273. [Google Scholar] [CrossRef] [PubMed]
- Willendrup, P.K.; Udby, L.; Knudsen, E.; Farhi, E.; Lefmann, K. Using McStas for modelling complex optics, using simple building bricks. Nucl. Instrum. Methods Phys. Res. Sect. A 2011, 634, S150–S155. [Google Scholar] [CrossRef]
- Lin, J.Y.Y.; Smith, H.L.; Granroth, G.E. MCViNE—An object oriented Monte Carlo neutron ray tracing simulation package. Nucl. Instrum. Methods Phys. Res. Sect. A 2016, 810, 86–96. [Google Scholar] [CrossRef] [Green Version]
- Farhi, E.; Hugouvieux, V.; Johnson, M.; Kob, W. Virtual experiments: Combining realistic neutron scattering instrument and sample simulations. J. Comput. Phys. 2009, 228, 5251–5261. [Google Scholar] [CrossRef]
- Hugouvieux, V.; Farhi, E.; Johnson, M.R. Structure and dynamics of le-G: Neutron scattering experiments and ab initio molecular dynamics simulations. PRB 2007, 75, 104208. [Google Scholar] [CrossRef] [Green Version]
- Willendrup, P.; Filges, U.; Keller, L.; Farhi, E.; Lefmann, K. Validation of a realistic powder sample using data from DMC at PSI. Phys. B Cond. Matt. 2006, 385, 1032. [Google Scholar] [CrossRef]
- Hexemer, A.; Müller-Buschbaum, P. Advanced grazing-incidence techniques for modern soft-matter materials analysis. IUCrJ 2015, 2, 106–125. [Google Scholar] [CrossRef] [PubMed]
- Muller-Buschbaum, P. Grazing incidence small-angle neutron scattering: Challenges and possibilities. Polym. J. 2013, 45, 34–42. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urban, V.S.; Heller, W.T.; Katsaras, J.; Bras, W. Soft Matter Sample Environments for Time-Resolved Small Angle Neutron Scattering Experiments: A Review. Appl. Sci. 2021, 11, 5566. https://doi.org/10.3390/app11125566
Urban VS, Heller WT, Katsaras J, Bras W. Soft Matter Sample Environments for Time-Resolved Small Angle Neutron Scattering Experiments: A Review. Applied Sciences. 2021; 11(12):5566. https://doi.org/10.3390/app11125566
Chicago/Turabian StyleUrban, Volker S., William T. Heller, John Katsaras, and Wim Bras. 2021. "Soft Matter Sample Environments for Time-Resolved Small Angle Neutron Scattering Experiments: A Review" Applied Sciences 11, no. 12: 5566. https://doi.org/10.3390/app11125566
APA StyleUrban, V. S., Heller, W. T., Katsaras, J., & Bras, W. (2021). Soft Matter Sample Environments for Time-Resolved Small Angle Neutron Scattering Experiments: A Review. Applied Sciences, 11(12), 5566. https://doi.org/10.3390/app11125566