Simultaneous SAXS/SANS Method at D22 of ILL: Instrument Upgrade
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Reduction of the Gamma Background by Lead Shielding
3.2. Shielding the X-ray Source against External Magnetic Fields
3.3. Overall SAXS Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SDDX-ray | Sample-to-detector distance of SAXS |
SDDNeutron | Sample-to-detector distance of SANS |
SLD | Scattering length density |
col | Neutron collimation |
diff | Difference mode of double-energy threshold X-ray detector, 4–10 KeV |
th1 | A single-energy threshold mode of X-ray detector, 4 KeV |
SD1 | Sample-to-detector distance of SAXS at 0.55 m |
SD2 | Sample-to-detector distance of SAXS at 1.632 m |
shield | Lead shielding on the SAXS system |
NoShield | SAXS system without any lead shielding walls |
References
- Schmutzler, T.; Schindler, T.; Zech, T.; Lages, S.; Thoma, M.; Appavou, M.S.; Peukert, W.; Spiecker, E.; Unruh, T. n-Hexanol Enhances the Cetyltrimethylammonium Bromide Stabilization of Small Gold Nanoparticles and Promotes the Growth of Gold Nanorods. ACS Appl. Nano Mater. 2019, 2, 3206–3219. [Google Scholar] [CrossRef]
- Schindler, T.; Lin, W.; Schmutzler, T.; Lindner, P.; Peukert, W.; Segets, D.; Unruh, T. Evolution of the Ligand Shell Around Small ZnO Nanoparticles During the Exchange of Acetate by Catechol: A Small Angle Scattering Study. ChemNanoMat 2019, 5, 116–123. [Google Scholar] [CrossRef]
- Schmiele, M.; Busch, S.; Morhenn, H.; Schindler, T.; Schmutzler, T.; Schweins, R.; Lindner, P.; Boesecke, P.; Westermann, M.; Steiniger, F.; et al. Structural Characterization of Lecithin-Stabilized Tetracosane Lipid Nanoparticles. Part I: Emulsions. J. Phys. Chem. B 2016, 120, 5505–5512. [Google Scholar] [CrossRef]
- Schmutzler, T.; Schindler, T.; Goetz, K.; Appavou, M.S.; Lindner, P.; Prevost, S.; Unruh, T. Concentration dependent morphology and composition of n-alcohol modified cetyltrimethylammonium bromide micelles. J. Phys. Condens. Mat. 2018, 30. [Google Scholar] [CrossRef] [PubMed]
- Schmutzler, T.; Schindler, T.; Schmiele, M.; Appavou, M.S.; Lages, S.; Kriele, A.; Gilles, R.; Unruh, T. The influence of n-hexanol on the morphology and composition of CTAB micelles. Colloid Surface A 2018, 543, 56–63. [Google Scholar] [CrossRef]
- Mohl, G.E.; Metwalli, E.; Bouchet, R.; Phan, T.N.T.; Cubitt, R.; Muller-Buschbaum, P. In Operando Small-Angle Neutron Scattering Study of Single-Ion Copolymer Electrolyte for Li-Metal Batteries. ACS Energy Lett. 2018, 3, 1–6. [Google Scholar] [CrossRef]
- Mohl, G.E.; Metwalli, E.; Muller-Buschbaum, P. In Operando Small-Angle X-ray Scattering Investigation of Nanostructured Polymer Electrolyte for Lithium-Ion Batteries. ACS Energy Lett. 2018, 3, 1525–1530. [Google Scholar] [CrossRef]
- Gehrer, S.; Schmiele, M.; Westermann, M.; Steiniger, F.; Unruh, T. Liquid Crystalline Phase Formation in Suspensions of Solid Trimyristin Nanoparticles. J. Phys. Chem. B 2014, 118, 11387–11396. [Google Scholar] [CrossRef] [PubMed]
- Schmiele, M.; Gehrer, S.; Unruh, T. Small-angle scattering simulations for suspensions of nanocrystals. Acta Crystallogr. A 2014, 70, C597. [Google Scholar] [CrossRef] [Green Version]
- Schuldes, I.; Noll, D.M.; Schindler, T.; Zech, T.; Gotz, K.; Appavou, M.S.; Boesecke, P.; Steiniger, F.; Schulz, P.S.; Unruh, T. Internal Structure of Nanometer-Sized Droplets Prepared by Antisolvent Precipitation. Langmuir 2019, 35, 13578–13587. [Google Scholar] [CrossRef]
- Unruh, T. Interpretation of small-angle X-ray scattering patterns of crystalline triglyceride nanoparticles in dispersion. J. Appl. Crystallogr. 2007, 40, 1008–1018. [Google Scholar] [CrossRef]
- Schmiele, M.; Schindler, T.; Westermann, M.; Steiniger, F.; Radulescu, A.; Kriele, A.; Gilles, R.; Unruh, T. Mesoscopic Structures of Triglyceride Nanosuspensions Studied by Small-Angle X-ray and Neutron Scattering and Computer Simulations. J. Phys. Chem. B 2014, 118, 8808–8818. [Google Scholar] [CrossRef] [PubMed]
- Wibmer, L.; Lages, S.; Unruh, T.; Guldi, D.M. Excitons and Trions in One-Photon- and Two-Photon-Excited MoS2: A Study in Dispersions. Adv. Mater. 2018, 30. [Google Scholar] [CrossRef] [PubMed]
- Putnam, C.D.; Hammel, M.; Hura, G.L.; Tainer, J.A. X-ray solution scattering (SAXS) combined with crystallography and computation: Defining accurate macromolecular structures, conformations and assemblies in solution. Q. Rev. Biophys. 2007, 40, 191–285. [Google Scholar] [CrossRef] [PubMed]
- Glatter, O.; Kratky, O. Small Angle X-ray Scattering; Academic Press: London, UK; New York, NY, USA, 1982; p. 515. [Google Scholar]
- Serdyuk, I.N.; Tsalkova, T.N.; Svergun, D.I.; Izotova, T.D. Determination of Radii of Gyration of Particles by Small-Angle Neutron-Scattering—Calculation of the Effect of Aggregates—Appendix. J. Mol. Biol. 1987, 194, 126–128. [Google Scholar] [CrossRef]
- Koch, M.H.J.; Vachette, P.; Svergun, D.I. Small-angle scattering: A view on the properties, structures and structural changes of biological macromolecules in solution. Q. Rev. Biophys. 2003, 36, 147–227. [Google Scholar] [CrossRef] [Green Version]
- Schindler, T.; Walter, J.; Peukert, W.; Segets, D.; Unruh, T. In Situ Study on the Evolution of Multimodal Particle Size Distributions of ZnO Quantum Dots: Some General Rules for the Occurrence of Multimodalities. J. Phys. Chem. B 2015, 119, 15370–15380. [Google Scholar] [CrossRef]
- Futscher, M.H.; Schultz, T.; Frisch, J.; Ralaiarisoa, M.; Metwalli, E.; Nardi, M.V.; Muller-Buschbaum, P.; Koch, N. Electronic properties of hybrid organic/inorganic semiconductor pn-junctions. J. Phys. Condens. Mat. 2019, 31. [Google Scholar] [CrossRef]
- Wang, X.Y.; Meng, J.Q.; Wang, M.M.; Xiao, Y.; Liu, R.; Xia, Y.G.; Yao, Y.; Metwalli, E.; Zhang, Q.; Qiu, B.; et al. Facile Scalable Synthesis of TiO2/Carbon Nanohybrids with Ultrasmall TiO2 Nanoparticles Homogeneously Embedded in Carbon Matrix. ACS Appl. Mater. Inter. 2015, 7, 24247–24255. [Google Scholar] [CrossRef]
- Wang, X.Y.; Zhao, D.; Wang, C.; Xia, Y.G.; Jiang, W.S.; Xia, S.L.; Yin, S.S.; Zuo, X.X.; Metwalli, E.; Xiao, Y.; et al. Role of Nickel Nanoparticles in High-Performance TiO2/Ni/Carbon Nanohybrid Lithium/Sodium-Ion Battery Anodes. Chem. Asian J. 2019, 14, 2169. [Google Scholar] [CrossRef] [Green Version]
- McAulay, K.; Wang, H.; Fuentes-Caparros, A.M.; Thomson, L.; Khunti, N.; Cowieson, N.; Cui, H.G.; Seddon, A.; Adams, D.J. Isotopic Control over Self-Assembly in Supramolecular Gels. Langmuir 2020, 36, 8626–8631. [Google Scholar] [CrossRef]
- Metwalli, E.; Gotz, K.; Lages, S.; Bar, C.; Zech, T.; Noll, D.M.; Schuldes, I.; Schindler, T.; Prihoda, A.; Lang, H.; et al. A novel experimental approach for nanostructure analysis: Simultaneous small-angle X-ray and neutron scattering. J. Appl. Crystallogr. 2020, 53, 722–733. [Google Scholar] [CrossRef]
- Deschler-Erb, E.; Lehmann, E.H.; Pernet, L.; Vontobel, P.; Hartmann, S. The complementary use of neutrons and X-rays for the non-destructive investigation of archaeological objects from Swiss collections. Archaeometry 2004, 46, 647–661. [Google Scholar] [CrossRef]
- Lehmann, E.H.; Mannes, D.; Kaestner, A.P.; Hovind, J.; Trtik, P.; Strobl, M. The XTRA Option at the NEUTRA Facility—More Than 10 Years of Bi-Modal Neutron and X-ray Imaging at PSI. Appl. Sci. 2021, 11, 3825. [Google Scholar] [CrossRef]
- Robuschi, S.; Tengattini, A.; Dijkstra, J.; Fernández, I.; Lundgren, K. A closer look at corrosion of steel reinforcement bars in concrete using 3D neutron and X-ray computed tomography. Cem. Concr. Res. 2021, 144, 106439. [Google Scholar] [CrossRef]
- Ziesche, R.F.; Arlt, T.; Finegan, D.P.; Heenan, T.M.M.; Tengattini, A.; Baum, D.; Kardjilov, N.; Markotter, H.; Manke, I.; Kockelmann, W.; et al. 4D imaging of lithium-batteries using correlative neutron and X-ray tomography with a virtual unrolling technique. Nat. Commun. 2020, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khaydukov, Y.; Soltwedel, O.; Keller, T. NREX: Neutron reflectometer with X-ray option. J. Large-Scale Res. Facil. 2015, 1, A38. [Google Scholar] [CrossRef] [Green Version]
- Mannes, D.; Schmid, F.; Frey, J.; Schmidt-Ott, K.; Lehmann, E. Combined Neutron and X-ray imaging for non-invasive investigations of cultural heritage objects. Phys. Procedia 2015, 69, 653–660. [Google Scholar] [CrossRef] [Green Version]
- Makarova, M.V.; Kravtsov, E.A.; Proglyado, V.V.; Khaydukov, Y.; Ustinov, V.V. Structure and Magnetism of Co/Dy Superlattices. Phys. Solid State 2020, 62, 1664–1666. [Google Scholar] [CrossRef]
- Murray, E.; Smith, A.G.; Pollitt, A.J.; Matarranz, J.; Tsekhanovich, I.; Soldner, T.; Koster, U.; Biswas, D.C. Measurement of Gamma Energy Distributions and Multiplicities Using STEFF. Nucl. Data Sheets 2014, 119, 217–220. [Google Scholar] [CrossRef]
- Dewhurst, C. GRASP. Available online: https://www.ill.eu/users/support-labs-infrastructure/software-scientific-tools/grasp (accessed on 15 March 2021).
- Bressler, I.; Kohlbrecher, J.; Thunemann, A.F. SASfit: A tool for small-angle scattering data analysis using a library of analytical expressions. J. Appl. Crystallogr. 2015, 48, 1587–1598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
SDDX-ray (m) | Neutron Collimation Length (m) | X-ray Energy Mode (keV) | Shielding Suppression Factor | Detector Suppression Factor | Total Suppression Factor |
---|---|---|---|---|---|
0.55 | 2.8 | 4 | 87 | - | 87 |
4–10 | 89 | 5.5 | 505 | ||
17.6 | 4 | 58 | - | 58 | |
4–10 | 54 | 5.0 | 275 | ||
1.64 | 2.8 | 4 | 50 | - | 50 |
4–10 | 49 | 5.1 | 248 | ||
17.6 | 4 | 17 | - | 17 | |
4–10 | 19 | 6.1 | 116 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Metwalli, E.; Götz, K.; Zech, T.; Bär, C.; Schuldes, I.; Martel, A.; Porcar, L.; Unruh, T. Simultaneous SAXS/SANS Method at D22 of ILL: Instrument Upgrade. Appl. Sci. 2021, 11, 5925. https://doi.org/10.3390/app11135925
Metwalli E, Götz K, Zech T, Bär C, Schuldes I, Martel A, Porcar L, Unruh T. Simultaneous SAXS/SANS Method at D22 of ILL: Instrument Upgrade. Applied Sciences. 2021; 11(13):5925. https://doi.org/10.3390/app11135925
Chicago/Turabian StyleMetwalli, Ezzeldin, Klaus Götz, Tobias Zech, Christian Bär, Isabel Schuldes, Anne Martel, Lionel Porcar, and Tobias Unruh. 2021. "Simultaneous SAXS/SANS Method at D22 of ILL: Instrument Upgrade" Applied Sciences 11, no. 13: 5925. https://doi.org/10.3390/app11135925
APA StyleMetwalli, E., Götz, K., Zech, T., Bär, C., Schuldes, I., Martel, A., Porcar, L., & Unruh, T. (2021). Simultaneous SAXS/SANS Method at D22 of ILL: Instrument Upgrade. Applied Sciences, 11(13), 5925. https://doi.org/10.3390/app11135925