Recycling Aged Asphalt Using Hard Asphalt Binder for Hot-Mixing Recycled Asphalt Mixture
Abstract
:1. Introduction
- Compare the performances of Trinidad lake asphalt, virgin asphalt binder, hard asphalt binder, aged asphalt binder, and recovered asphalt binder.
- Reveal the modification mechanism of Trinidad lake asphalt on aged asphalt binder.
- Verify the feasibility of increasing RAP content in RHMA by using the concept of HMAC.
2. Experiments
2.1. Materials
2.1.1. Binder
2.1.2. Mixture
2.2. Test Methods
2.2.1. Dynamic Modulus Test
2.2.2. Rheology Test
2.2.3. FTIR Spectra Analysis
2.2.4. Atomic Force Microscope Test
2.2.5. Performances Test of Recycled Asphalt Mixture
3. Results and Discussion
3.1. Performance of Hard Asphalt Modified Aged Asphalt
3.1.1. Determining the Optimal Content of Lake Asphalt in Hard Asphalt
3.1.2. FTIR Spectra Analysis of Recycled Asphalt Binder
3.1.3. Analysis of Microstructure Characteristics of Recycled Asphalt Binder
3.1.4. Rheological Properties of Recycled Asphalt Binder
3.2. Performance of Hot-Mix Recycled Asphalt Mixture Containing Hard Asphalt
4. Conclusions
- (1)
- The addition of TLA leads to a change in the component proportion of asphalt binder, but no new functional groups are produced; the addition of TLA leads to a decrease in the number and total area of bee structures, which indicates that lake asphalt changes the interaction between asphaltene and other asphalt molecules. This is conducive to the dissolution of asphaltene and forms a more stable system.
- (2)
- The low-temperature performance of recycled asphalt binder and aged asphalt binder has the same change rule. With the extension of aging time, the low-temperature performance of recycled asphalt binder gradually decreases, the high-temperature performance increases, and fatigue damage develops rapidly.
- (3)
- As high-modulus asphalt mixture and RAP have similarity in terms of asphalt binder performance and fine gradation, adopting the high modulus design concept for recycling can increase the RAP content. Through the optimization of gradation and the use of hard asphalt, the high- and low-temperature performance and anti-fatigue performance of 100% recycled asphalt mixture are better than when using the AC-20 mixture. Thus, recycling with a high-modulus asphalt mixture design concept to increase the RAP content is feasible.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Debbarma, S.; Ransinchung, G.D. Achieving sustainability in roller compacted concrete pavement mixes using reclaimed asphalt pavement aggregates—State of the art review. J. Clean. Prod. 2021, 287, 125078. [Google Scholar] [CrossRef]
- Georgiou, P.; Loizos, A. Environmental assessment of warm mix asphalt incorporating steel slag and high reclaimed asphalt for wearing courses: A case study. Road Mater. Pavement Des. 2021, 22, S662–S671. [Google Scholar] [CrossRef]
- Wang, H.; Thakkar, C.; Chen, X.; Murrel, S. Life-cycle assessment of airport pavement design alternatives for energy and environmental impacts. J. Clean. Prod. 2016, 133, 163–171. [Google Scholar] [CrossRef]
- Wang, F.; Xie, J.; Wu, S.; Li, J.; Barbieri, D.M.; Zhang, L. Life cycle energy consumption by roads and associated interpretative analysis of sustainable policies. Renew. Sustain. Energy Rev. 2021, 141, 110823. [Google Scholar] [CrossRef]
- Pradyumna, T.A.; Mittal, A.; Jain, P.K. Characterization of Reclaimed Asphalt Pavement (RAP) for Use in Bituminous Road Construction. Procedia Soc. Behav. Sci. 2013, 104, 1149–1157. [Google Scholar] [CrossRef] [Green Version]
- Hussain, A.; Yanjun, Q. Effect of Reclaimed Asphalt Pavement on the Properties of Asphalt Binders. Procedia Eng. 2013, 54, 840–850. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Yang, J.; Yu, D.; Jiang, Y.; Ruan, K.; Tao, W.; Sun, C.; Luo, L. Reducing the variability of multi-source reclaimed asphalt pavement materials: A practice in China. Constr. Build. Mater. 2021, 278, 122389. [Google Scholar] [CrossRef]
- Delorme, J.L.; De la Roche, C.; Wendling, L. LPC Bituminous Mixtures Design Guide; Laboratoire Central des Ponts et Chaussées: Paris, France, 2007. [Google Scholar]
- Yan, J.; Zhang, Z.; Zhu, H.; Li, F.; Liu, Q. Experimental Study of Hot Recycled Asphalt Mixtures with High Percentages of Reclaimed Asphalt Pavement and Different Recycling Agents. J. Test. Eval. 2014, 42, 1183–1190. [Google Scholar] [CrossRef]
- Gao, L.; Li, H.; Xie, J.; Yu, Z.; Charmot, S. Evaluation of pavement performance for reclaimed asphalt materials in different layers. Constr. Build. Mater. 2018, 159, 561–566. [Google Scholar] [CrossRef]
- Hu, X.; Nie, Y.; Feng, Y.; Zheng, Q. Pavement Performance of Asphalt Surface Course Containing Reclaimed Asphalt Pavement (RAP). J. Test. Eval. 2012, 40, 1162–1168. [Google Scholar] [CrossRef]
- Wang, H.; Dang, Z.; Li, L.; You, Z. Analysis on fatigue crack growth laws for crumb rubber modified (CRM) asphalt mixture. Constr. Build. Mater. 2013, 47, 1342–1349. [Google Scholar] [CrossRef]
- Al-Saffar, Z.H.; Yaacob, H.; Satar, M.K.I.M.; Saleem, M.K.; Lai, J.C.; Putra Jaya, R. A review on rejuvenating materials used with reclaimed hot mix asphalt. Can. J. Civ. Eng. 2021, 48, 233–249. [Google Scholar] [CrossRef]
- Yu, X.; Zaumanis, M.; dos Santos, S.; Poulikakos, L.D. Rheological, microscopic, and chemical characterization of the rejuvenating effect on asphalt binders. Fuel 2014, 135, 162–171. [Google Scholar] [CrossRef]
- Yousefi, A.; Behnood, A.; Nowruzi, A.; Haghshenas, H. Performance evaluation of asphalt mixtures containing warm mix asphalt (WMA) additives and reclaimed asphalt pavement (RAP). Constr. Build. Mater. 2021, 268, 121200. [Google Scholar] [CrossRef]
- Wróbel, M.; Woszuk, A.; Ratajczak, M.; Franus, W. Properties of reclaimed asphalt pavement mixture with organic rejuvenator. Constr. Build. Mater. 2021, 271, 121514. [Google Scholar] [CrossRef]
- Yan, J.; Leng, Z.; Ling, C.; Zhu, J.; Zhou, L. Characterization and comparison of high-modulus asphalt mixtures produced with different methods. Constr. Build. Mater. 2020, 237, 117594. [Google Scholar] [CrossRef]
- Zhu, J.; Ma, T.; Fan, J.; Fang, Z.; Chen, T.; Zhou, Y. Experimental study of high modulus asphalt mixture containing reclaimed asphalt pavement. J. Clean. Prod. 2020, 263, 121447. [Google Scholar] [CrossRef]
- Ma, T.; Wang, H.; Huang, X.; Wang, Z.; Xiao, F. Laboratory performance characteristics of high modulus asphalt mixture with high-content RAP. Constr. Build. Mater. 2015, 101, 975–982. [Google Scholar] [CrossRef]
- Liu, J.; Yan, K.; Liu, J.; Guo, D. Evaluation of the characteristics of Trinidad Lake Asphalt and Styrene–Butadiene–Rubber compound modified binder. Constr. Build. Mater. 2019, 202, 614–621. [Google Scholar] [CrossRef]
- Fang, M.; Park, D.; Singuranayo, J.L.; Chen, H.; Li, Y. Aggregate gradation theory, design and its impact on asphalt pavement performance: A review. Int. J. Pavement Eng. 2018, 20, 1408–1424. [Google Scholar] [CrossRef]
- Mull, M.A.; Stuart, K.; Yehia, A. Fracture resistance characterization of chemically modified crumb rubber asphalt pavement. J. Mater. Sci. 2002, 37, 557–566. [Google Scholar] [CrossRef]
- Wang, J.; Yuan, J.; Kim, K.W.; Xiao, F. Chemical, thermal and rheological characteristics of composite polymerized asphalts. Fuel 2018, 227, 289–299. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Yu, T.; Liu, Z. Microstructural characteristics of differently aged asphalt samples based on atomic force microscopy (AFM). Constr. Build. Mater. 2020, 255, 119388. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H. Influence of asphalt microstructure to its high and low temperature performance based on atomic force microscope (AFM). Constr. Build. Mater. 2021, 267, 120998. [Google Scholar] [CrossRef]
Item | TH-70# | Test Methods |
---|---|---|
Penetration at 25 °C (0.1 mm) | 64.2 | ASTM D5 |
Softening point (°C) | 49.0 | ASTM D36 |
Ductility at 15 °C (cm) | >100 | ASTM D113 |
After thin film oven test (TFOT for short, 163 °C, 5 h) | ||
Mass loss (%) | 0.21 | ASTM D2872 |
Penetration at 25 °C (0.1 mm) | 48.6 | ASTM D5 |
Softening point (°C) | 60.5 | ASTM D36 |
Ductility at 15 °C (cm) | 40.1 | ASTM D113 |
Item | TLA | Specification |
---|---|---|
Penetration at 25 °C (0.1 mm) | 2.5 | 0–5 |
Softening point (°C) | 95.0 | ≥90 |
Ductility at 15 °C (cm) | - | - |
Ash content (%) | 19.2 | - |
Density (g/m3) | 1.383 | 1.3–1.5 |
After TFOT (163 °C, 5 h) | ||
Mass loss (%) | 0.24 | <2.0 |
Penetration ratio (%) | 81 | ≥50 |
Number | Description | Mark | Component |
---|---|---|---|
1 | Virgin asphalt (VA) binder, TH-70# | VA | 100% VA |
2 | Trinidad lake asphalt (TLA), the modifier for virgin asphalt binder to produce the hard asphalt (HA) binder | TLA | 100% TLA |
3 | Hard asphalt binder, produced by TLA and VA, used as newly-added virgin asphalt binder for recycled mixture | HA | 40% TLA + 60% VA |
4 | Aged asphalt binder, obtained by heating VA, numbered by their aging hours | A5h A12h A19h A26h | 100% aged asphalt binder |
5 | Recycled asphalt binder, produced by mixing the different aging level of asphalt binder with HA | A5h + HA A12h + HA A19h + HA A26h + HA | 50% aged asphalt binder +50% HA |
Penetration at 25 °C (0.1 mm) | Softening Point (°C) | Ductility at 15 °C (cm) | Density (g/m3) |
---|---|---|---|
27 | 57 | 21 | 1.44 |
Properties | Limestone | RAP Aggregates | Mineral Filler | Test Method | ||
---|---|---|---|---|---|---|
Coarse | Fine | Coarse | Fine | |||
Bulk-specific gravity (kg/m3) | 2751 | 2715 | 2720 | 2622 | 2648 | T0308 |
Flat-elongated Particles (%) | 11.4 | - | 13.5 | - | - | T0311 |
Water absorption (%) | 0.5 | - | 0.4 | - | - | T0308 |
Crush value (%) | 12.6 | - | 14.2 | - | - | T0316 |
LA abrasion (%) | 22 | - | 24 | - | - | T0317 |
Item | HA | Specification | |
---|---|---|---|
Penetration at 25 °C (0.1 mm) | 31 | 20–40 | |
Softening point (°C) | 59 | ≥54 | |
Ductility at 15 °C (cm) | 45 | - | |
Density (g/m3) | 1.42 | 1.3–1.5 | |
After TFOT (163 °C, 5 h) | Mass loss (%) | 0.22 | <2.0 |
Mixtures | Newly-Added Binder | Optimal Binder/Aggregate Ratio | Newly-Added Binder/Aggregate Ratio (in Mass of Recycled Mixture) |
---|---|---|---|
AC-20 | VA | 4.20% | 0 |
EME-20@50%RAP | HA | 5.50% | 2.79% |
EME-20@100%RAP | HA | 6.10% | 1.36% |
Mixture Type | Maximum Bending Stress (KN) | Stress Ratio | ||
---|---|---|---|---|
0.2 | 0.3 | 0.4 | ||
AC-20 | 8.2 | 1.6 | 2.5 | 3.3 |
EME-20@50%RAP | 10.1 | 2.0 | 3.0 | 4.1 |
EME-20@100%RAP | 9.7 | 1.9 | 2.9 | 3.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Li, J.; Liu, G.; Yang, T.; Zhao, Y. Recycling Aged Asphalt Using Hard Asphalt Binder for Hot-Mixing Recycled Asphalt Mixture. Appl. Sci. 2021, 11, 5698. https://doi.org/10.3390/app11125698
Zhou J, Li J, Liu G, Yang T, Zhao Y. Recycling Aged Asphalt Using Hard Asphalt Binder for Hot-Mixing Recycled Asphalt Mixture. Applied Sciences. 2021; 11(12):5698. https://doi.org/10.3390/app11125698
Chicago/Turabian StyleZhou, Jian, Jing Li, Guoqiang Liu, Tao Yang, and Yongli Zhao. 2021. "Recycling Aged Asphalt Using Hard Asphalt Binder for Hot-Mixing Recycled Asphalt Mixture" Applied Sciences 11, no. 12: 5698. https://doi.org/10.3390/app11125698
APA StyleZhou, J., Li, J., Liu, G., Yang, T., & Zhao, Y. (2021). Recycling Aged Asphalt Using Hard Asphalt Binder for Hot-Mixing Recycled Asphalt Mixture. Applied Sciences, 11(12), 5698. https://doi.org/10.3390/app11125698