Influential Factors and Evaluation Methods of the Performance of Grouted Semi-Flexible Pavement (GSP)—A Review
Abstract
:Featured Application
Abstract
1. Introduction
2. Influential Factors on the Performance of GSP
2.1. Microstructure
2.2. Raw Materials and Admixtures
2.2.1. Aggregate Gradation
2.2.2. Asphalt Binder
2.2.3. High-Fluidity Cement Mortar
2.3. Admixtures
2.3.1. Polymers
2.3.2. Fibers
2.3.3. Interface Modifiers
2.3.4. Emulsified Asphalt
2.3.5. Complex Admixtures
2.3.6. New Functional Admixtures
3. Evaluation Methods of the Performance of GSP
3.1. Common Laboratory Testing Methods
3.1.1. High-Temperature Performance
3.1.2. Low-Temperature Performance
3.1.3. Moisture Resistance
3.1.4. Oil Corrosion Resistance
3.1.5. Impact Resistance
3.1.6. Anti-Weather-Exposure Ability
3.2. Fatigue Life Performance
3.2.1. Characteristics of Fatigue Life of GSP
3.2.2. Fatigue Correction Factor
3.3. Computationand Simulation Method
3.3.1. Finite Element Method under Various Contact Models
3.3.2. Compressive Strength Prediction Model
3.3.3. 2S2P1D Model
3.3.4. Weak Interlayer Model
4. Conclusions
- Microstructure can be analyzed by microscopic observation method in the study of influential factors. However, the result is generally subjective, because image capturing and judging mainly rely on personal experience. Thus, associating tests should be introduced to acquire results in qualitative and quantitative ways;
- Effects of raw materials such as asphalt content and fine aggregate on GSP are not clear enough, due to assumptions in GSP design. More conditions and parameters need to be revised and developed for the evaluation of GSP;
- Individual admixture cannot completely meet the requirement for the low-temperature performance of GSP, while the combination of admixtures cannot be designed reasonably. More effective modifiers should be developed to improve the cracking resistance of GSP;
- Some other characteristics of GSP including interface strength, skid resistance, and other properties are seldom studied, which should be explored to assess the performance of GSP;
- Models used in GSP simulation are based on assumptions of traditional AC. Therefore, these computations and predictions cannot be accurate, as they ignore the difference in behaviors and parameters between GSP and AC.
5. Future Studies
- Advanced technologies like X-ray CT and AFM technology can be used for characterizing the micro-structure of GSP;
- More factors need to be considered and revised by laboratory tests, including binder content and fine aggregate;
- High-efficiency interface modifiers and combined admixtures need to be developed and evaluated;
- Full-scale accelerated test is recommended to assess the fatigue life and other properties of GSP;
- Models of GSP should be carefully considered according to the influential factors in simulation and computation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Moghaddam, T.B.; Karim, M.R.; Abdelaziz, M. A review on fatigue and rutting performance of asphalt mixes. Int. J. Sci. Res. Essays 2011, 6, 670–682. [Google Scholar] [CrossRef]
- Aalborg. Densiphalt Handbook; Densit A/S: Glenview, IL, USA, 2000. [Google Scholar]
- Roffe, J.C. Salviacim–Introducing the Pavement; Jean Lafebvre Enterprise: Paris, France, 1989. [Google Scholar]
- Cheng, L.; Hao, P.-W. Design method of mother-asphalt-mixture with semi-flexible pavement based on the volume method. J. Xi’an Highw. Univ. 2002, 22, 1–3. [Google Scholar]
- Cheng, L.; Hao, P.-W. Mixture of cement slurry with semi-flexible pavement. J. Xi’an Highw. Univ. 2002, 22, 1–4. [Google Scholar]
- Hao, P.-W.; Cheng, L.; Lin, L. Pavement performance of semi-flexible pavement in laboratory. J. Chang. Univ. (Nat. Sci. Ed.) 2003, 23, 2. [Google Scholar]
- Goel, A.; Das, A. Emerging road materials and innovative applications. In Proceedings of the National Conference on Materials and Their Application in Civil Engg, Hamirpur, India, 26–27 August 2004; pp. 1–12. [Google Scholar]
- Ahlrich, R.C.; Anderton, G.L. Construction and Evaluation of Resin Modified Pavement; Army Engineer Waterways Experiment Station Vicksburg Ms Geotechnical Lab: Vicksburg, MS, USA, 1991. [Google Scholar]
- Svenson, K. Estimated lifetimes of road pavements in Sweden using time-to-event analysis. J. Transp. Eng. 2014, 140, 04014056. [Google Scholar] [CrossRef] [Green Version]
- Jacobsen, S. The Effectiveness of Grouted Macadam at Intersections: A Life-Cycle Cost Analysis. Stockholm, KTH School of Architecture and the Built Environment. 2012, p. 101. Available online: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-101813 (accessed on 14 July 2021).
- Du, Y.; Chen, J.; Han, Z.; Liu, W.J.C.; Materials, B. A review on solutions for improving rutting resistance of asphalt pavement and test methods. Constr. Build Mater. 2018, 168, 893–905. [Google Scholar] [CrossRef]
- Kowalski, K.J.; Król, J.; Radziszewski, P.; Casado, R.; Blanco, V.; Pérez, D.; Viñas, V.M.; Brijsse, Y.; Frosch, M.; Le, D. Eco-friendly materials for a new concept of asphalt pavement. Transp. Res. Procedia 2016, 14, 3582–3591. [Google Scholar] [CrossRef] [Green Version]
- Pratelli, C.; Betti, G.; Giuffre, T.; Marradi, A. Preliminary In-Situ Evaluation of an Innovative, Semi-Flexible Pavement Wearing Course Mixture Using Fast Falling Weight Deflectometer. Materials 2018, 11, 611. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Shen, F.; Qiao, L.; Ding, Q. Recovery and utilization of waste asphalt materials (RAP) on semi-flexible pavement. Energy Educ. Sci. Technol. Part A Energy Sci. Res. 2014, 32, 3401–3408. [Google Scholar]
- Mayer, J.; Thau, M. Jointless pavements for heavy-duty airport application: The Semi-Flexible approach. Adv. Airfield Pavements 2001, 87–100. [Google Scholar] [CrossRef]
- Pelland, R.J.; Gould, J.S.; Mallick, R.B. Selecting a rut resistant hot mix asphalt for Boston-Logan International Airport. Airfield Pavements Chall. New Technol. 2004, 390–408. [Google Scholar] [CrossRef]
- Collop, A.; Elliott, R. Assessing the mechanical performance of Densiphalt. In Performance and Durability of Bituminous Materials and Hydraulic Stabilised Composites, Proceedings of the Third European Symposium, Leeds, UK, April 1999; Springer: Berlin/Heidelberg, Germany, 1999; pp. 343–357. [Google Scholar]
- Setyawan, A. Development of Semi-Flexible Heavy-Duty Pavements; University of Leeds: Leeds, UK, 2006. [Google Scholar]
- Rone, C.L.J.M.P.S. Evaluation of Salviacim; US Army Corps of Engineer Waterways Experiment Station: Vicsburg, MS, USA, 1976. [Google Scholar]
- Ahlrich, R.C.; Anderton, G.L. Evaluation of Resin-Modified Paving Process; Transportation Research Board: Washington, DC, USA, 1991; pp. 32–41. ISBN 030905155X. [Google Scholar]
- Emery, J. An evaluation of the performance of concrete blocks on aircraft pavements at Luton airport. In Proceedings of the 3rd International Conference on Concrete Block Paving, Rome, Italy, 17–19 May 1988. [Google Scholar]
- Anderton, G.L.; Ahlrich, R.C. Design, Construction and Performance of Resin Modified Pavement at Fort Campbell Army Airfield; Army Engineer Waterways Experiment Station Vicksburg Ms Geotechnical Lab: Vicksburg, MS, USA, 1994. [Google Scholar]
- Battey, R. Construction, Testing and Preliminary Performance Report on the Resin Modified Pavement Demonstration Project; Mississippi Department of Transportation: Grenada, MS, USA, 2004. Available online: https://rosap.ntl.bts.gov/view/dot/24140 (accessed on 14 July 2021).
- Battey, R.L.; Whittington, J.S. Construction, Testing and Performance Report on the Resin Modified Pavement Demonstration Project; Mississippi Department of Transportation: Washington, DC, USA, 2007. Available online: https://rosap.ntl.bts.gov/view/dot/24137 (accessed on 14 July 2021).
- Anderton, G.L. User’s Guide: Resin Modified Pavement; Army Engineer Waterways Experiment Station Vicksburg Ms Geotechnical Lab: Vicksburg, MS, USA, 1996. [Google Scholar]
- Anderton, G.L. Engineering Properties of Resin Modified Pavement (RMP) for Mechanistic Design; Army Engineer Waterways Experiment Station Vicksburg Ms Geotechnical Lab: Vicksburg, MS, USA, 2000. [Google Scholar]
- Department of the Air Force. Engineering Technical Letter (ETL) 01-8: Resin Modified Pavement (RMP) Design and Application Criteria; Department of the Air Force Headquarters Air Force Civil Engineer Support Agency: Tyndall AFB, FL, USA, 2001. [Google Scholar]
- Ahlrich, R.C.; Anderton, G.L. Resin modified pavement in airfield applications. In Proceedings of the Airport Pavement Innovations. Theory to Practice. Proceedings of Conference, Vicksburg, MS, USA, 8–10 September 1993; Available online: http://worldcat.org/isbn/0872629252 (accessed on 14 July 2021).
- Wang, S.Q.; Lin, X.X.; Lou, H.X. Study on special asphalt mixture, a new type of pavement composite material. J. East China Highw. 1989, 2, 76–81. [Google Scholar]
- Xu, P.H.; Wang, Z.K. Indoor test and research on poured semi-rigid pavement materials. J. Xi ’an Highw. Jiaotong Univ. 1995, 3, 22–25. [Google Scholar]
- Zhang, X.; Pan, D. Design method of Semi-flexible pavement base asphalt mixture. J. Highw. Eng. 2000, 25, 22–23. [Google Scholar]
- Zhang, X.; Pan, D. Preparation of Semi-flexible pavement cement slurry. J. Highw. Eng. 2000, 25, 6–7. [Google Scholar]
- Bonicelli, A.; Preciado, J.; Rueda, A.; Duarte, A. Semi-flexible material: A solution for high-performance pavement infrastructures. In Proceedings of the 3rd World Multidisciplinary Civil Engineering, Architecture, Urban Planning Symposium, WMCAUS 2018, Prague, Czech Republic, 18–22 June 2018. [Google Scholar] [CrossRef]
- Loeber, L.; Sutton, O.; Morel, J.; Valleton, J.M.; Muller, G. New direct observations of asphalts and asphalt binders by scanning electron microscopy and atomic force microscopy. J. Microsc. 1996, 182, 32–39. [Google Scholar] [CrossRef]
- Mazumder, M.; Ahmed, R.; Ali, A.W.; Lee, S.-J.J.C.; Materials, B. SEM and ESEM techniques used for analysis of asphalt binder and mixture: A state of the art review. Constr. Build Mater. 2018, 186, 313–329. [Google Scholar] [CrossRef]
- Ling, T.Q.; Tang, Q.Q.; Luo, R. Microstructure analysis and strength theory of semi-flexible pavement materials. In Proceedings of the 4th International Road and Airport Pavement Technology Conference, Kunming, China, 23–25 April 2002. [Google Scholar]
- Huo, Y.Z.; Liang, Y.; Huang, B.T. Performance test and mechanism analysis of semi-flexible pavement. J. Highw. 2009, 2, 52–56. [Google Scholar]
- Hou, S.; Xu, T.; Huang, K. Investigation into engineering properties and strength mechanism of grouted macadam composite materials. Int. J. Pavement Eng. 2015, 17, 878–886. [Google Scholar] [CrossRef]
- Cheng, L. Research on Performance and Design Method of Semi-Flexible Pavement Mixture; Chang’an University: Xi’an, China, 2002. [Google Scholar]
- Setyawan, A.; Zoorob, S.E.; Hasan, K.E. Investigating and Comparing Traffic Induced and Restrained Temperature Stresses in a Conventional Rigid Pavement and Semi-Rigid Layers. Procedia Eng. 2013, 54, 875–884. [Google Scholar] [CrossRef] [Green Version]
- Netterberg, F.; de Beer, M. Weak interlayers in flexible and semi-flexible road pavements: Part 1. J. S. Afr. Inst. Civ. Eng. 2012, 54, 32–42. [Google Scholar]
- De Beer, M. Weak interlayers found in flexible and semi-flexible road pavements. In Proceedings of the 8th RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements, Nantes, France, 7–9 June 2016; pp. 425–430. [Google Scholar]
- Koting, S.; Karim, M.R.; Mahmud, H.B.; Abdul Hamid, N.A. Mechanical properties of cement-bitumen composites for semi-flexible pavement surfacing. Balt. J. Road Bridge Eng. 2014, 9, 191–199. [Google Scholar] [CrossRef]
- Yang, G.L.; Wu, K.H.; Wang, W.M.; Meng, F.B.; Li, Y.F.; Bao, X.N. Parent Asphalt Mixture Design of Semi-Flexible Pavement Based on Method of Main Mineral Aggregate Void Filling. Adv. Mater. Res. 2012, 446–449, 2599–2602. [Google Scholar] [CrossRef]
- Saboo, N.; Khalpada, V.; Sahu, P.K.; Radhakrishnan, R.; Gupta, A. Optimal proportioning of grout constituents using mathematical programming for semi flexible pavement. Int. J. Pavement Res. Technol. 2019, 12, 297–306. [Google Scholar] [CrossRef]
- Setiawan, A. Design and properties of hot mixture porous asphalt for semi-flexible pavement applications. J. Tek. Sipil. 2009, 5, 41–46. [Google Scholar]
- Saboo, N.; Ranjeesh, R.; Gupta, A.; Suresh, M. Development of hierarchical ranking strategy for the asphalt skeleton in semi-flexible pavement. Constr. Build. Mater. 2019, 201, 149–158. [Google Scholar] [CrossRef]
- Ling, T.Q.; Dong, Q.; Dong, Y.Y. Application of rubber asphalt in infilled semi-flexible pavement. J. Chang. Univ. (Nat. Sci. Ed.) 2009, 26, 24–27. [Google Scholar]
- Ling, T.-Q.; Zhaoz, Z.-J.; Xiong, C.-H.; Dong, Y.-Y.; Liu, Y.-Y.; Dong, Q. The Application of Semi-Flexible Pavement on Heavy Traffic Roads. Int. J. Pavement Res. Technol. 2009, 2, 211–217. [Google Scholar]
- Husain, N.M.; Mahmud, H.; Karim, M.R.; Hamid, N. Effects of aggregate gradations on properties of grouted Macadam composite pavement. In Proceedings of the 2010 2th International Conference on Chemical, Biological and Environmental Engineering, Cairo, Egypt, 2–4 November 2010; pp. 128–131. [Google Scholar]
- Husain, N.M.; Karim, M.R.; Mahmud, H.B.; Koting, S. Effects of Aggregate Gradation on the Physical Properties of Semiflexible Pavement. Adv. Mater. Sci. Eng. 2014, 2014, 8. [Google Scholar] [CrossRef] [Green Version]
- Hou, S.; Xu, T.; Huang, K. Aggregate gradation influence on grouting results and mix design of asphalt mixture skeleton for semi-flexible pavement. J. Test. Eval. 2017, 45, 591–600. [Google Scholar] [CrossRef]
- Ding, Q.J.; Sun, Z.; Shen, F.; Huang, S.L. The performance analysis of semi-flexible pavement by the volume parameter of matrix asphalt mixture. Adv. Mater. Res. 2011, 168–170, 351–356. [Google Scholar] [CrossRef]
- Zhao, G.Q.; Huang, C.; Deng, C. Research on the influence of asphalt type on the performance of semi-flexible pavement materials. J. Highw. Eng. 2017, 42, 199–201. [Google Scholar]
- Wang, W.M.; Gao, D.; Wu, K.H. Study on the properties of semi-flexible pavement materials. J. Highw. Eng. 2014, 1, 78–82. [Google Scholar]
- Luo, S.; Yang, X.; Zhong, K.; Yin, J. Open-graded asphalt concrete grouted by latex modified cement mortar. Road Mater. Pavement Des. 2018, 21, 1–17. [Google Scholar] [CrossRef]
- Plug, C.; de Bondt, A.; van der Woerd, B.; Steensma, G. Improved Performance Grouted Macadams–High Performance Applications of Grouted Macadam; Ooms Nederland Holding bv: Avenhorn, The Netherlands, 2006; Available online: http://www.materialedge.co.uk/docs/CP-AdB-Stabifalt(English)[1].pdf (accessed on 14 July 2021).
- Debbarma, C.; Debbarma, D.; Roy, A.; Zachariah, J.P.; Sarkar, P. A study on the effect of admixture in grouted macadam. In Proceedings of the AMIE Section A & B Summer Examination Commences wef 2nd, Agartala, India, 30 April 2018; p. 62. [Google Scholar]
- Liu, B. Specification for Design of Highway Asphalt Pavement; Ministry of Transport of the People’s Republic of China: Beijing, China, 2017. [Google Scholar]
- Hu, S.G.; Zhang, R.G.; Ding, Q.J. Semi-flexible pavement performance of grouting cement mortar research. J. Highw. 2009, 7, 1–6. [Google Scholar]
- Hu, S.; Huang, S.; Ding, Q.; Zhang, R. Study on the cementitious mortar for semi-flexible pavement. In Proceedings of the 1st International Conference on Microstructure Related Durability of Cementitious Composites, Nanjing, China, 13–15 October 2008; pp. 1237–1246. [Google Scholar]
- Pei, J.; Cai, J.; Zou, D.; Zhang, J.; Li, R.; Chen, X.; Jin, L. Design and performance validation of high-performance cement paste as a grouting material for semi-flexible pavement. Constr. Build. Mater. 2016, 126, 206–217. [Google Scholar] [CrossRef]
- Zhang, J.; Cai, J.; Pei, J.; Li, R.; Chen, X. Formulation and performance comparison of grouting materials for semi-flexible pavement. Constr. Build. Mater. 2016, 115, 582–592. [Google Scholar] [CrossRef]
- Koting, S.; Karim, M.R.; Mahmud, H.; Mashaan, N.S.; Ibrahim, M.R.; Katman, H.; Husain, N.M. Effects of using silica fume and polycarboxylate-type superplasticizer on physical properties of cementitious grout mixtures for semiflexible pavement surfacing. Sci. World J. 2014, 2014, 596364. [Google Scholar] [CrossRef]
- Vijaya, S.S.A.; Karim, M.R.; Mahmud, H.; Ishak, N.F. Influence of superplasticiser on properties of cementitious grout used in semi-flexible pavement. In Proceedings of the 8th International Conference of Eastern Asia Society for Transportation Studies, Eastern Asia Society for Transportation Studies, Surabaya, Indonesia, 16–19 November 2009; p. 296. [Google Scholar] [CrossRef]
- Cheng, Z.Q.; Kong, F.S.; Jia, R.R. Study on bleeding performance of cement-based grout materials for semi-flexible pavement. J. China Foreign Highw. 2014, 36, 276–279. [Google Scholar]
- Gu, X.Y.; Li, L.X.; Cheng, Z.Q. Study on flow performance of cement-based grout materials for semi-flexible pavement. J. Highw. 2017, 62, 280–285. [Google Scholar]
- Wang, Y.J.; Guo, C.Y.; Tian, Y.F.; Wang, J.J. Design of Mix Proportion of Cement Mortar with High-performance Composite Semi-flexible Pavement. Adv. Mater. Res. Switz. 2013, 641–642. [Google Scholar] [CrossRef]
- Hassan, K.; Setyawan, A.; Zoorob, S. Effect of Cementitious Grouts on the Properties of Semi-Flexible Bituminous Pavements in Performance of Bituminous and Hydraulic Materials in Pavements; Routledge: London, UK, 2017; pp. 113–120. [Google Scholar]
- Cai, J.; Pei, J.; Luo, Q.; Zhang, J.; Li, R.; Chen, X. Comprehensive service properties evaluation of composite grouting materials with high-performance cement paste for semi-flexible pavement. Constr. Build. Mater. 2017, 153, 544–556. [Google Scholar] [CrossRef]
- CAI, X.; Zhang, S.X.; Li, K. Limit stress analysis of weak internal parts of Semi-flexible materials. J. Taiyuan Univ. Technol. 2017, 48, 652–656. [Google Scholar]
- Anderton, G.L. The Resin Modified Pavement System: A New Pavement Surfacing Technology. In Airport Facilities: Innovations for the Next Century, Proceedings of the 25th International Air Transportation Conference, Austin, TX, USA, 14–17 June 1998; American Society of Civil Engineers: Austin, TX, USA, 1998. [Google Scholar]
- Wang, S.; Lin, X.; Lou, H. Study on the composite material of new pavement-special asphalt mixture. J. East China Highw. 1989, 2, 15. [Google Scholar]
- Ling, T.; Zhou, J.; Zhao, Z.; Li, C.; Dong, Y.; Research, T. Study on Optimization of Polymer Modified Cement Slurry for Poured Semi-flexible Pavement. J. Highw. 2009, 6, 24–28. [Google Scholar]
- Huang, C.; Hong, J.X.; Lin, J.T.; Deng, C.; Li, L. Utilization of Waste Rubber Powder in Semi-Flexible Pavement. Key Eng. Mater. 2014, 599, 361–367. [Google Scholar] [CrossRef]
- Xu, Y.; Jiang, Y.; Xue, J.; Tong, X.; Cheng, Y.J.C. High-Performance Semi-Flexible Pavement Coating Material with the Microscopic Interface Optimization. Coatings 2020, 10, 268. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Liang, X.; Jiang, C.; Pan, Y. Impact analysis of Carboxyl Latex on the performance of semi-flexible pavement using warm-mix technology. Constr. Build. Mater. 2018, 179, 566–575. [Google Scholar] [CrossRef]
- Cheng, Z.-Q.; Zhang, X.-Y.; Kong, F.-S. Research on Mechanism and Improving Low Temperature Performance of Semi Flexible Pavement Material by Use of PVA. J. Wuhan Univ. Technol. 2016, 38, 44–49. [Google Scholar]
- Yang, Y.; Huang, S.L.; Ding, Q.J.; Peng, X.Y. The Property Research on Interfacial Modificated Semi-Flexible Pavement Material. Appl. Mech. Mater. 2011, 71–78, 1090–1098. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Cheng, Z.Q.; Kong, F.S. Low Temperature Performance of Semi-flexible Pavement With CA Grouting Material. J. Beijing Univ. Technol. 2017, 43, 1205–1211. [Google Scholar] [CrossRef]
- Huang, C.; Liu, J.; Hong, J.; Liu, Z. Improvement on the crack resistance property of semi-flexible pavement by cement-emulsified asphalt mortar. In Proceedings of the 3rd Mainland, Taiwan and Hong Kong Conference on Green Building Materials, GBM 2011, Wuhan, China, 25–27 November 2011; pp. 26–32. [Google Scholar]
- Sun, Z.; Hou, X.X.; He, G.P. Research on the Crack Resistance at Low Temperature and the Mechanism of Semi-Flexible Pavement. Aer. Adv. Eng. Res. 2015, 22, 533–536. [Google Scholar]
- Gong, M.; Xiong, Z.; Chen, H.; Deng, C.; Chen, X.; Yang, J.; Zhu, H.; Hong, J. Evaluation on the cracking resistance of semi-flexible pavement mixture by laboratory research and field validation. Constr. Build. Mater. 2019, 207, 387–395. [Google Scholar] [CrossRef]
- Fang, B.; Xu, T.; Shi, S. Laboratory study on cement slurry formulation and its strength mechanism for semi-flexible pavement. J. Test. Eval. 2016, 44, 907–913. [Google Scholar] [CrossRef]
- Hamzani; Munirwansyah; Hasan, M.; Sugiarto, S. The influence of the using waste tire rubber and natural ziolite as Asphalt and Cement replacements to compressive strength of Semi-Flexible Pavement. In Proceedings of the 8th Annual International Conference 2018 on Science and Engineering, Aceh, Indonesia, 12–14 September 2018; IOP Publishing Ltd: Banda Aceh, Indonesia, 2018. [Google Scholar]
- Zhu, J.; Birgisson, B.; Kringos, N. Polymer modification of bitumen: Advances and challenges. Eur. Polym. J. 2014, 54, 18–38. [Google Scholar] [CrossRef] [Green Version]
- Yin, H. Study on the Performance of Semi-Flexible Pavement Mixed With Fiber; University Of South China: Hengyang, China, 2013. [Google Scholar]
- Hou, Q.Q.; Sun, Z. Study on the properties of semi-flexible pavement modified by water-based epoxy resin. J. Traffic Stand. 2013, 24, 81–84. [Google Scholar] [CrossRef]
- Kong, F.S. Study on the Performance of HIGH Performance Semi-Flexible Pavement Materials; Chang’an University: Xi’an, China, 2016. [Google Scholar]
- Li, Z.M. Study on Temperature Stability of Semi-Flexible Pavement Composites Filled with Rubber Powder; Guangxi University of Science and Technology: Liuzhou, China, 2013. [Google Scholar]
- Ling, T.-Q.; Zheng, X.-W.; Ling, M.; Xiong, C.-H.; Dong, Q. Research on performance of water-retention and temperature-fall semi-flexible pavement material. China J. Highw. Transp. 2010, 23, 7–11. [Google Scholar]
- Dong, Q.; Wang, C.; Xiong, C.; Li, X.; Wang, H.; Ling, T. Investigation on the Cooling and Evaporation Behavior of Semi-Flexible Water Retaining Pavement based on Laboratory Test and Thermal-Mass Coupling Analysis. Materials 2019, 12, 2546. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.Y. Application of Phase Change Materials in Semi-Flexible Pavement; Chang’an University: Xi’an, China, 2013. [Google Scholar]
- Sha, S. Study on Preparation and Application of PEG/SiO2 Compound Phase Change Materials for Semi-flexible Pavement. Road Mach. Constr. Mech. 2016, 33, 63–66. [Google Scholar] [CrossRef]
- Xu, P. Experimental study on composite materials for semi-rigid road surface. J. Highw. Eng. 2002, 15, 7–10. [Google Scholar]
- Wu, G.X.; Zhang, Y.L.; Wang, A.M. Experimental study on high temperature stability of semi-flexible pavement. J. Chongqing Jiaotong Univ. 2007, 26, 52–55. [Google Scholar] [CrossRef]
- Zhang, D.K.; Cheng, C.Q.; Wu, G.X. Analysis of water stability and low temperature crack resistance of semi-flexible pavement. J. Chongqing Jiaotong Univ. 2007, 26, 55–57. [Google Scholar] [CrossRef]
- Dong, Y.Y. Research on Design Parameters and Construction Technology of High-Performance Semi-Flexible Pavement; Chongqing Jiaotong University: Chongqing, China, 2008. [Google Scholar]
- Zhang, R.K. Research and Application of High Performance Perfusion Semi-Flexible Pavement Materials; Wuhan University of Technology: Wuhan, China, 2009. [Google Scholar]
- Pang, C.Q.; Yang, Y.L. Research on Properties of Semi-Flexible Mixtures. J. Highw. 2004, 4, 108–110. [Google Scholar] [CrossRef]
- Pang, C.Q. Mixture design for grouting pavements. In Proceedings of the International Workshop on Energy and Environment in the Development of Sustainable Asphalt Pavements, Xi’an, China, 1 June 2010; pp. 262–265. [Google Scholar]
- Li, X.; Li, Y. Analysis of road performance of semi-flexible cement asphalt mixture. J. Shandong Agric. Univ. (Nat. Sci. Ed.) 2018, 49, 815–818. [Google Scholar]
- Hu, S.-G.; Huang, S.-L.; Liu, Z.-G.; Ding, Q.-J.; Wu, G.-X. Design and construction of the semi-flexible based permeable anti-sliding noise-reducing pavement. J. Wuhan Univ. Technol. 2008, 30, 27–31. [Google Scholar]
- Huo, Y.-Z.; Liang, Y.; Huang, B.-T.; Huang, F. Laboratory Test and Mechanism Analysis of Road Performance of SemiFlexible Pavement. Highway 2009, 11, 52–56. [Google Scholar]
- Afonso, M.L.; Dinis-Almeida, M.; Pereira-de-Oliveira, L.A.; Castro-Gomes, J.; Zoorob, S.E. Development of a semi-flexible heavy duty pavement surfacing incorporating recycled and waste aggregates—Preliminary study. Constr. Build. Mater. 2016, 102, 155–161. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, H.; Li, R. Laboratory study on performance of semi-flexible mixture. In Proceedings of the 4th International Conference on Civil, Architectural and Hydraulic Engineering, ICCAHE 2015, Guangzhou, China, 20–21 June 2015; pp. 989–994. [Google Scholar]
- Manikantha Raju, G.; Sita Rami Reddy, D.; Sudhakar Reddy, K. Performance evaluation of cement grouted bituminous mixes. In Proceedings of the 12th International Conference on Asphalt Pavements, ISAP 2014, Raleigh, NC, USA, 1–5 June 2014; pp. 1047–1056. [Google Scholar]
- Zhang, W.; Shen, S.; Goodwin, R.D.; Wang, D.; Zhong, J.J.M. Performance Characterization of Semi-Flexible Composite Mixture. Materials 2020, 13, 342. [Google Scholar] [CrossRef] [Green Version]
- Ding, Q.J.; Zhao, M.Y.; Shen, F.; Zhang, X.Q. Mechanical Behavior and Failure Mechanism of Recycled Semi-flexible Pavement Material. J. Wuhan Univ. Technol. 2015, 30, 981–988. [Google Scholar] [CrossRef]
- Hong, J.X.; Wang, K.J.; Xiong, Z.J.; Gong, M.H.; Deng, C.; Peng, G.; Zhu, H.R. Investigation into the freeze-thaw durability of semi-flexible pavement mixtures. Road Mater. Pavement Des. 2019, 21, 2198–2214. [Google Scholar] [CrossRef]
- Hirato, T.; Murayama, M.; Sasaki, H.J. Development of high stability hot mix asphalt concrete with hybrid binder. J. Traffic Transp. Eng. 2014, 1, 424–431. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.K. Experimental study on the properties of single gradation asphalt crushed stone with cement slurry filling hole. J. Highw. 2015, 60, 219–221. [Google Scholar]
- Li, Y.; Wang, J.W.; Zhang, Y. Study on impact resistance of perfusion semi-flexible pavement materials. J. Highw. Eng. 2016, 41, 55–59. [Google Scholar] [CrossRef]
- Karami, M. Application of the Cementitious Grouts on Stability and Durability of Semi Flexible Bituminous Mixtures. AIP Conf. Proc. 2017, 1903, 020012. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, J.; Thom, N.; Zoorob, S. Fracture and Fatigue Strength of Grouted Macadams. Available online: http://hdl.handle.net/1822/7208 (accessed on 14 July 2021).
- Da Rios, G.; Agostinacchio, M.; Fiori, F. Performance and durability of grouted open grade asphalt concretes. In Proceedings of the 2021 5th International Conference on Maintenance and Rehabilitation of Pavements and Technological Control, MAIREPAV 2007, Park City, UT, USA, 8–10 August 2007; pp. 505–510. [Google Scholar]
- De Oliveira, J.R.M. Grouted Macadam: Material Characterisation for Pavement Design; University of Nottingham: Nottingham, UK, 2006. [Google Scholar]
- Oliveira, J.; Pais, J.C.; Thom, N.H.; Zoorob, S.E. The effect of using rest periods in 4PB tests on the fatigue life of grouted macadams. In Proceedings of the C-TAC International Conference Communications, Universidade do Minho, Guimarães, Portugal, 24–25 September 2009; pp. 277–283. [Google Scholar]
- Ling, T.Q.; Zhao, Z.J.; Wu, D. Experimental study on fatigue resistance of semi-flexible pavement materials. In Proceedings of the Annual Meeting of China Highway Society and Technical Seminar of Highway Construction in Mountainous Areas, Chongqing, China, 10 September 2009. [Google Scholar]
- Huang, C. Study on Volume Stability and Crack Resistance of Semi-Flexible Pavement Materials; Wuhan University of Technology: Wuhan, China, 2010. [Google Scholar]
- Yang, B.; Weng, X. The influence on the durability of semi-flexible airport pavement materials to cyclic wheel load test. Constr. Build. Mater. 2015, 98, 171–175. [Google Scholar] [CrossRef]
- Yang, B.; Weng, X.; Liu, J.; Jiang, L.; Zhang, J.; Liu, P.; Wen, X. The influence of on semi-flexible airport pavement material working performance by porosity. In Proceedings of the Advanced Materials and Structural Engineering: Proceedings of the International Conference on Advanced Materials and Engineering Structural Technology (ICAMEST 2015), Qingdao, China, 25–26 April 2015; p. 157. [Google Scholar]
- Oliveira, J.; Sangiorgi, C.; Fattorini, G.; Zoorob, S. Investigating the fatigue performance of grouted macadams. Proc. Inst. Civil Eng.-Transp. 2009, 162, 115–123. [Google Scholar] [CrossRef]
- Wu, D. Experimental Study on Fatigue Resistance of Semi-Flexible Pavement Materials; Chongqing Jiaotong University: Chongqing, China, 2009. [Google Scholar]
- Corradini, A.; Cerni, G.; D’Alessandro, A.; Ubertini, F.J.C.; Materials, B. Improved understanding of grouted mixture fatigue behavior under indirect tensile test configuration. Constr. Build Mater. 2017, 155, 910–918. [Google Scholar] [CrossRef]
- Oliveira, J.R.; Thom, N.H.; Zoorob, S. Design of pavements incorporating grouted macadams. J. Traffic Transp. Eng. 2008, 134, 7–14. [Google Scholar] [CrossRef]
- Oliveira, J.; Pais, J.C.; Thom, N.H.; Zoorob, S. A study of the fatigue properties of grouted macadams. Int. J. Pavements 2007, 6, 112–123. [Google Scholar]
- Oliveira, J.; Zoorob, S.; Thom, N.; Pereira, P.A. A simple approach to the design of pavements incorporating grouted macadams. Available online: http://hdl.handle.net/1822/8002 (accessed on 14 July 2021).
- Yu, Z.H. Study on the Structure and Performance of Semi-Flexible Asphalt Mixture Pavement; Hunan University: Changsha, China, 2007. [Google Scholar]
- Huang, F. Research on Structural Design Theory and Method of Semi-Flexible Composite Pavement; Chongqing Jiaotong University: Chongqing, China, 2008. [Google Scholar]
- Chen, C. Study on Semi-Flexible Structure of Highway Tunnel Pavement; Chongqing Jiaotong University: Chongqing, China, 2011. [Google Scholar]
- Xu, G.; Li, G.; Xu, W.; Li, C.; Li, Y. Mechanics Numerical Analysis of Semi-flexible Compound Pavement for Large Aircraft. J. Highw. Eng. 2015, 40, 122–126. [Google Scholar] [CrossRef]
- Wang, W.P. Research on Semi-Flexible Composite Pavement Material and Structure; Changsha University of Science and Technology: Changsha, China, 2012. [Google Scholar]
- Gao, J.H.; Wang, Z.L. The Analysis of Layer Cohesive Force of Semi-flexible Composite Pavement Based on the Software of BISAR. J. Highw. Eng. 2013, 38, 17–20. [Google Scholar]
- Wang, W.M.; Wu, K.H. Research on crack resistance of semi-flexible pavement material based on J integral. J. Highw. 2016, 61, 63–67. [Google Scholar]
- Setyawan, A. Asessing the Compressive Strength Properties of Semi-Flexible Pavements. Procedia Eng. 2013, 54, 863–874. [Google Scholar] [CrossRef] [Green Version]
- Huang, F.; Wu, G.-X.; Wang, Y.; Zhang, D. Study on Compacted Rebound Modulus of Semi-Flexible Pavement Compound Material. J. Chongqing Jiaotong Univ. 2008, 1, 65–68. [Google Scholar]
- Wu, G.-X.; Wang, Y.; Wang, R.-Y. A study of the strength mechanism of semi-flexible composite pavement material and a modified method for the determination of its compressive resilient modulus. In Integrated Transportation Systems: Green, Intelligent, Reliable, Proceedings of the 10th International Conference of Chinese Transportation Professionals, Beijing, China, 4–8 August 2010; American Society of Civil Engineers: Beijing, China, 2010; pp. 3055–3062. [Google Scholar]
- Cai, X.; Zhang, H.; Zhang, J.; Chen, X.; Yang, J.; Hong, J. Investigation on reinforcing mechanisms of semi-flexible pavement material through micromechanical model. Constr. Build. Mater. 2019, 198, 732–741. [Google Scholar] [CrossRef]
- De Beer, M.; Maina, J.W.; Netterberg, F. Mechanistic modelling of weak interlayers in flexible and semi-flexible road pavements: Part 2. J. S. Afr. Inst. Civ. Eng. 2012, 54, 43–54. [Google Scholar]
- Highways Agency. Design Manual for Roads and Bridges; HM Stationery Office: London, UK, 2006. [Google Scholar]
- Pożarycki, A.; Fengier, J.; Górnaś, P.; Wanatowski, D. Backcalculation of pavements incorporating Grouted Macadam technology. Road Mater. Pavement Des. 2017, 19, 1372–1388. [Google Scholar] [CrossRef]
Authors | Observation Methods | Zoom Ratios | Observing Ranges |
---|---|---|---|
Ling et al. [36] | SEM | 500 times | Interfaces |
Huo et al. [37] | SEM (200SXVFT-IR), Fourier Infrared Spectrum Analyzer | 5000 times | Interface transition zone, Chemical or asphalt aging reaction |
Hou et al. [38] | SEM (Model JSM-6390LV, JEOL) | 10,000 times | Microcracking, Fiber-like network |
Gradation | Density [g/cm3] | Relative Density | Void [%] | Permeability Rate |
---|---|---|---|---|
Gradation A | 1.83 | 2.46 | 25.57 | 1.34(10−3 [m/s]) |
Gradation B | 1.85 | 2.46 | 24.85 | 1.11(10−3 [m/s]) |
Gradation C | 1.87 | 2.46 | 23.78 | 0.94(10−3 [m/s]) |
BSI-4% | N/A | N/A | 33.05 | 362.9(m/day) |
Densiphalt12-4.5% | N/A | N/A | 32.08 | 247.68(m/day) |
Gradation | Cantabro Loss [%] | Indirect Tensile Strength Test [kPa] |
---|---|---|
BSI-4% | 33.2 | 113.35 |
Densiphalt12-4.5% | 34.91 | 136.8 |
Gradation | Compressive Rebound Modulus Test | Low Temperature Bending Test | ||||
---|---|---|---|---|---|---|
Compressive Strength [Mpa] | Rebound Modulus [Mpa] | Maximum Load [N] | Flexural Strength [Mpa] | Maximum Strain [με] | Stiffness Modules [Mpa] | |
Continuous | 4.66 | 1913.48 | 802.30 | 6.26 | 1140 | 5483.77 |
Uniform | 5.23 | 2812.60 | 866.48 | 6.73 | 1040 | 6486.53 |
Composite gradation | N/A | N/A | N/A | 6.95 | 1838 | 3780.6 |
Upper limit | N/A | N/A | N/A | 6.73 | 1943 | 3467 |
Lower limit | N/A | N/A | N/A | 7.57 | 1523 | 4970.3 |
Author | Binder Types | Void Rate [%] | Optimum Asphalt Content [%] | Unconfined Compressive Strength [kPa] | Marshall Stability [kN] | Cantabro Loss [%] |
---|---|---|---|---|---|---|
Setyawan et al. [46] | 50-pen straight run asphalt | 27.44 | 4 | 1691.59 | N/A | 18.7 |
7%SBS Asphalt | 27.20 | 4 | 906.56 | N/A | 10.1 | |
100-pen straight run asphalt | 27.74 | 4 | 760.64 | N/A | 34.3 | |
Ling et al. [48] | Rubber-asphalt | 22.1 | 3.6 | N/A | 6.80 | 23.8 |
Zhao et al. [54] | High-viscosity asphalt | 26.0 | 3 | N/A | 3.6 | 19.5 |
Rubber-asphalt | 26.2 | 3 | N/A | 2.7 | 38.4 | |
SBS asphalt | 25.9 | 3 | N/A | 3.0 | 32.5 | |
Ordinary asphalt | 25.8 | 3 | N/A | 2.4 | 48 | |
Wang et al. [55] | 4.4%SBS asphalt | 25 | 4.4 | N/A | 4.6 | N/A |
Luo et al. [56] | SBS asphalt | 22.47 | 3.4 | N/A | 4.15 | 14.7 |
Author | Asphalt Types | Test | Test Condition | Strength [Mpa] | Modulus [Mpa] |
---|---|---|---|---|---|
Setyawan [46] | 50-pen straight run asphalt | Indirect Tensile Strength | 20 °C | 259.65 | 953.71 |
7%SBS-Modified Asphalt | 155.82 | 331.44 | |||
100-pen straight run asphalt | 125.26 | 548.68 |
Author | Water-binder Ratio | Sand-cement Ratio | Water Reducing Agent | Expansion Agent | Others | Fluidity (0.5 h) [s] | Compressive Strength (7 d) [Mpa] | Flexural Strength (7 d) [Mpa] | Drying Shrinkage Rate (60 d) [0.001] |
---|---|---|---|---|---|---|---|---|---|
Hu et al. [60,61] | 0.45 | 0.25 | 0.3% polycarboxylic acid | 8% UEA | N/A | 12.98 | 19.4 | 4.92 | 3.188 |
Pei et al. [62,63] | 0.56 | N/A | 1.0% TH-928 polycarboxylic acid | 10% UEA | 0.008% Saponin | ≈10.5 | ≈25 | ≈6 | ≈1.34 |
0.56~0.58 | N/A | N/A | N/A | 10% Fly ash, 10% Mineral powder | 11~14 | 15~20 | 2.2~5.7 | 1.4~2.7 | |
0.61~0.63 | 15 | N/A | N/A | 10% Fly ash | 12~17 | 9~15 | 2.7~5.7 | 1.0~1.8 | |
Koting et al. [43,64] | 0.32 | N/A | 2% super plasticizers | N/A | 5% of Silica powder | 14.2 | 57.5 | 5.8 | N/A |
Saboo et al. [45] | 0.57~0.59 | 0.3 | 2% naphthalene | N/A | N/A | 10~14 | 20~24.5 | N/A | N/A |
0.48~0.50 | 0.3 | 1% polycarboxylate | N/A | N/A | 10~14 | 21~25 | N/A | N/A | |
Ling et al. [49] | 0.65 | 0.14 | N/A | N/A | 6% Fly ash, 10% Mineral powder | 11.4 | 17.2 | 4.4 | N/A |
0.65 | 0.2 | N/A | N/A | 10% Mineral powder, 10% Polymer | 11.1 | 12.6 | 5.9 | N/A |
Void Ratio of OMA [%] | Maximum Shrinkage Deformation [%] | Maximum Expansion Deformation [%] |
---|---|---|
20 | 0.13 | 0.39 |
25 | 0.14 | 0.38 |
30 | 0.15 | 0.34 |
Categories | Citations | Ingredients | Blending Method | Dosage 1 [%] | Rutting Test [times /mm] | Low-Temperature Strength | ||
---|---|---|---|---|---|---|---|---|
Methods | Tensile Strength −10 °C [Mpa] | Tensile Strain −10 °C [με] | ||||||
Polymer | Ling et al. [74] | DL latex | Into cement | P/C = 1.0 | 20,138 | Splitting test | 1.548 | 4590 |
YH resin | P/C = 5.0 | 21,457 | 1.955 | 2740 | ||||
BD emulsion | P/C = 4.7 | 19,079 | 1.222 | 5170 | ||||
Luo et al. [56] | Latex | Into cement | P/C = 3.0 | ≈13,500 | Small beam bending test | ≈10.5 | ≈2400 | |
Ling et al. [49] | Styrene-butadiene emulsion | Into cement | P/C = 10 | 15,750 | Small beam bending test | 6.95 | 1838 | |
Huang et al. [75] | Waste rubber powder | Into cement | P/C < 20 | Increase of 47.5% | Small beam bending test | N/A | 1132 | |
Ling et al. [48] | Rubber-asphalt | Into asphalt | P/A = 21 | 15,000 | Small beam bending test | 2.18 | 5140 | |
Xu et al. [76] | Carboxylated styrene-butadiene latex | Into cement | P/C = 10 | 14,318.18 | Small beam bending test | 6.47 | 1807.23 | |
Wang et al. [77] | Carboxyl Latex | Into cement | P/C = 8 | 21,724 | Small beam bending test | 7.15 | 1527 | |
Fibre | Cheng et al. [78] | PVA fiber solution | Into cement | F/C = 5 | N/A | Small beam bending test | 9.16 | 3656.82 |
Interface modifier | Yang et al. [79] | Silane Coupling agent | Into cement | I/C = 0.4 | N/A | Small beam bending test | 6.97 | ≈1025 |
Xu et al. [76] | Silane coupling agent | Into cement | I/C = 0.5 | 16,578.95 | Small beam bending test | 7.17 | 1826.72 | |
Emulsified asphalt | Zhang et al. [80] | Cationic emulsified asphalt | Into cement | A/C = 31.3 | N/A | Small beam bending test | 11.05 | 3159.26 |
Huang et al. [81] | Emulsified asphalt | Into cement | A/C = 30 | N/A | Small beam bending test | 6.56 | 1446 | |
Xu et al. [76] | Cationic emulsified asphalt | Into cement | A/C = 5 | 42,000 | Small beam bending test | 6.98 | 2133.29 | |
Combination | Sun et al. [82] | Waterborne epoxy-emulsified asphalt | Into cement | E/A = 60; C/A = 55 | N/A | Small beam bending test | 6.18 | 2662 |
Gong et al. [83] | Modified Agent-100 | Into asphalt | M/A = 14 | N/A | Semi-circular bending test | 12.91 | N/A | |
Modified Agent-100 incorporated fiber | Into asphalt | M/A = 14; F/A = 0.2 | 10.18 |
Authors | Void Rate of OMA | Marshall Test | Rutting Test | Immersion Marshall Test | Small Beam Bending Test (−10 °C) | Splitting Test (−10 °C, 1 mm/min) | |
---|---|---|---|---|---|---|---|
Stability [kN] | Flow Value [0.1 mm] | Dynamic Stability [times/mm] | Residual Stability [%] | Tensile Strength [Mpa] | Tensile Strength [Mpa] | ||
Xu et al. [30,95] | 25% | >25 | 10~25 | >12,000 | N/A | 4.82 | 25% |
Hao et al. [6] | 25% | 17.12 | 19.8 | 10,242 | 85.2 | 6.408 | 25% |
Wu et al. [96,97] | 25% | 33.1 | 51.4 | 22,096 | 95.9 | N/A | 25% |
Dong [98] | 24.9% | 17.7 | 32.4 | 15,750 | 78.4 | 7.57 | 24.9% |
Zhang [99] | 25% | 7.38 | 27.1 | 21,000 | 100.4 | 6.71 | 25% |
Pang et al. [100,101] | 22% | N/A | N/A | >6000 | N/A | N/A | 22% |
Hou et al. [38] | 29.5% | N/A | N/A | 15,750 | 110% | 5.2 | 29.5% |
Li et al. [102] | 25% | >20 | N/A | >10,000 | >75 | N/A | 25% |
Hu et al. [103] | 30% | N/A | N/A | 21,725 | N/A | N/A | 30% |
Huo et al. [104] | 25% | 29.52 | N/A | 22,096 | 95.9 | N/A | 25% |
Author | Test | Loading Mode | Void Rate of OMA | Fatigue Equation | Failure Standard | Fatigue Correction Factor |
---|---|---|---|---|---|---|
Oliveira et al. [117,118] | Two-point bending test | Stress mode | 25% | R2 = 0.82 | 10% residual stiffness | 45 |
Strain mode | 25% | R2 = 0.87 | 50% initial stiffness | data | ||
ITFT | Strain mode | 25% | R2 = 0.9134 | 9 mm vertical displacement or cracking | 45 | |
Ling et al. [119] | Four-point bending test | Stress mode | 23% | R2 = 0.9526 | Fracture | 128.5 |
Huang et al. [120] | Three-point bending test | Stress mode | 30% | R2 = 0.9134 | Fracture | N/A |
Wang et al. [55] | Four-point bending test | Strain mode | 25% | R2 = 0.9915 | Fracture | N/A |
Ding et al. [109] | Dynamic splitting tensile test on mechanics testing system (MTS) | Stress mode | N/A | Fracture | 1703.3 | |
Hou et al. [38] | Four-point bending test | Stress mode | 28.9% | R2 = 0.9956 | Fracture | N/A |
Wang et al. [77] | ITFT | Stress mode | 28% | R2 = 0.9684 | Fracture | N/A |
Gong et al. [83] | Semi-circular bending | Stress mode | 22% | R2 = 0.92 | Fracture | N/A |
Yang et al. [121,122] | Cyclic wheel loading test | Times | 26% | R2 = 0.9311 | 20 mm cracking | N/A |
Loading Mode | Fatigue Life | Correction Factor |
---|---|---|
Continuous loading | 17,739 | 1.0 |
1000 cycles Loading and Equivalent Intermittent Time | 40,980 | 2.3 |
2 cycles loading + 1 cycle intermission | 50,823 | 2.9 |
1 cycle loading + 1 cycle intermission | 140,050 | 7.9 |
1 cycle loading + 2 cycles intermission | 734,395 | 41.4 |
Author | Thickness H [cm] | Elastic Modulus E [Mpa] | Poisson’s Ratio [μ] |
---|---|---|---|
Yu et al. [129] | 15 | 1200 | 0.25 |
Huang et al. [130] | 10 | 2000 | 0.25 |
Chen et al. [131] | 15 | 2000 | 0.25 |
Xu et al. [132] | 20 | 2500 | 0.25 |
Wang et al. [133] | 5 | 2000 | 0.25 |
Yang et al. [122] | 30 | 3600 | 0.15 |
Setyawan et al. [40] | 6 | 7600 | 0.24 |
Author | Maximum Shear Stress (Strain) | Maximum Tensile Stress (Strain) | Maximum Deflection Value [mm] |
---|---|---|---|
Huang et al. [130] | 0.235 Mpa | 0.155 Mpa | 0.572 |
Chen et al. [131] | N/A | 0.1224 Mpa | 0.480 |
Xu et al. [132] | 444.5με | 266.1με | 3.502 |
Wang et al. [133] | 621.1 Kpa | ≈800 Kpa | 0.213 |
Yang et al. [122] | ≈1.28 Mpa | ≈1.25 Mpa | N/A |
Setyawan et al. [40] | 0.576 Mpa | 3.80 Mpa | N/A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, X.; Hao, P. Influential Factors and Evaluation Methods of the Performance of Grouted Semi-Flexible Pavement (GSP)—A Review. Appl. Sci. 2021, 11, 6700. https://doi.org/10.3390/app11156700
Guo X, Hao P. Influential Factors and Evaluation Methods of the Performance of Grouted Semi-Flexible Pavement (GSP)—A Review. Applied Sciences. 2021; 11(15):6700. https://doi.org/10.3390/app11156700
Chicago/Turabian StyleGuo, Xiaogang, and Peiwen Hao. 2021. "Influential Factors and Evaluation Methods of the Performance of Grouted Semi-Flexible Pavement (GSP)—A Review" Applied Sciences 11, no. 15: 6700. https://doi.org/10.3390/app11156700
APA StyleGuo, X., & Hao, P. (2021). Influential Factors and Evaluation Methods of the Performance of Grouted Semi-Flexible Pavement (GSP)—A Review. Applied Sciences, 11(15), 6700. https://doi.org/10.3390/app11156700