Bio-Delignification of Green Waste (GW) in Co-Digestion with the Organic Fraction of Municipal Solid Waste (OFMSW) to Enhance Biogas Production
Abstract
:1. Introduction
Bio-Delignification with White-Rot Fungi
2. Materials and Methods
2.1. Bio-Delignification Process
2.2. Chemical Delignification
2.3. Substrate Collection and Inoculum
2.4. Anaerobic Digestion (AD) Process
- V0 = normalized volume of biogas (Nm3)
- V = volume of biogas measured by the amount of water displaced (m3)
- pL = external pressure (Atm)
- pw = vapor pressure of water at room temperature (Atm)
- T0 = standard temperature (293 °K = 20 °C)
- P0 = standard pressure (1 Atm)
- T = room temperature (°K)
- Control (only inoculum)
- OFMSW
- Untreated GW
- OFMSW + GW
- OFMSW + GW pretreated
2.5. Analytical Methods
3. Results and Discussion
3.1. Bio-Delignification and Chemical Delignification Processes
3.2. Anaerobic Digestion (AD) of OFMSW and Bio-Delignificated GW
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tyagi, V.K.; Fdez-Güelfo, L.A.; Zhou, Y.; Álvarez-Gallego, C.J.; Garcia, L.I.R.; Ng, W.J. Anaerobic Co-Digestion of Organic Fraction of Municipal Solid Waste (OFMSW): Progress and Challenges. Renew. Sustain. Energy Rev. 2018, 93, 380–399. [Google Scholar] [CrossRef]
- Municipal Waste Statistics—Statistics Explained. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php/Municipal_waste_statistics (accessed on 13 March 2021).
- Inghels, D.; Dullaert, W.; Aghezzaf, E.-H.; Heijungs, R. Towards Optimal Trade-Offs between Material and Energy Recovery for Green Waste. Waste Manag. 2019, 93, 100–111. [Google Scholar] [CrossRef]
- Malinauskaite, J.; Jouhara, H.; Czajczyńska, D.; Stanchev, P.; Katsou, E.; Rostkowski, P.; Thorne, R.J.; Colón, J.; Ponsá, S.; Al-Mansour, F.; et al. Municipal Solid Waste Management and Waste-to-Energy in the Context of a Circular Economy and Energy Recycling in Europe. Energy 2017, 141, 2013–2044. [Google Scholar] [CrossRef]
- Logan, M.; Visvanathan, C. Management Strategies for Anaerobic Digestate of Organic Fraction of Municipal Solid Waste: Current Status and Future Prospects. Waste Manag. Res. 2019, 37, 27–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naveen, B.P.; Sumalatha, J.; Malik, R.K. A Study on Contamination of Ground and Surface Water Bodies by Leachate Leakage from a Landfill in Bangalore, India. Int. J. Geo-Eng. 2018, 9, 27. [Google Scholar] [CrossRef]
- Bekchanov, M.; Mirzabaev, A. Circular Economy of Composting in Sri Lanka: Opportunities and Challenges for Reducing Waste Related Pollution and Improving Soil Health. J. Clean. Prod. 2018, 202, 1107–1119. [Google Scholar] [CrossRef]
- Wainaina, S.; Awasthi, M.K.; Sarsaiya, S.; Chen, H.; Singh, E.; Kumar, A.; Ravindran, B.; Awasthi, S.K.; Liu, T.; Duan, Y.; et al. Resource Recovery and Circular Economy from Organic Solid Waste Using Aerobic and Anaerobic Digestion Technologies. Bioresour. Technol. 2020, 301, 122778. [Google Scholar] [CrossRef]
- Cucchiella, F.; D’Adamo, I.; Gastaldi, M. An Economic Analysis of Biogas-Biomethane Chain from Animal Residues in Italy. J. Clean. Prod. 2019, 230, 888–897. [Google Scholar] [CrossRef]
- Turcios, A.E.; Cayenne, A.; Uellendahl, H.; Papenbrock, J. Halophyte Plants and Their Residues as Feedstock for Biogas Production—Chances and Challenges. Appl. Sci. 2021, 11, 2746. [Google Scholar] [CrossRef]
- Baena-Moreno, F.M.; Sebastia-Saez, D.; Pastor-Pérez, L.; Reina, T.R. Analysis of the Potential for Biogas Upgrading to Syngas via Catalytic Reforming in the United Kingdom. Renew. Sustain. Energy Rev. 2021, 144, 110939. [Google Scholar] [CrossRef]
- Ardolino, F.; Arena, U. Biowaste-to-Biomethane: An LCA Study on Biogas and Syngas Roads. Waste Manag. 2019, 87, 441–453. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Circular Economy Action Plan—For a Cleaner and More Competitive Europe; European Union: Brussels, Belgium, 2020; Available online: https://ec.europa.eu/environment/pdf/circular-economy/new_circular_economy_action_plan.pdf (accessed on 1 June 2021).
- Battista, F.; Frison, N.; Pavan, P.; Cavinato, C.; Gottardo, M.; Fatone, F.; Eusebi, A.L.; Majone, M.; Zeppilli, M.; Valentino, F.; et al. Food Wastes and Sewage Sludge as Feedstock for an Urban Biorefinery Producing Biofuels and Added-Value Bioproducts. J. Chem. Technol. Biotechnol. 2020, 95, 328–338. [Google Scholar] [CrossRef]
- Shahriari, H.; Warith, M.; Hamoda, M.; Kennedy, K.J. Anaerobic Digestion of Organic Fraction of Municipal Solid Waste Combining Two Pretreatment Modalities, High Temperature Microwave and Hydrogen Peroxide. Waste Manag. 2012, 32, 41–52. [Google Scholar] [CrossRef]
- Pavi, S.; Kramer, L.E.; Gomes, L.P.; Miranda, L.A.S. Biogas Production from Co-Digestion of Organic Fraction of Municipal Solid Waste and Fruit and Vegetable Waste. Bioresour. Technol. 2017, 228, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Kougias, P.G.; Angelidaki, I. Biogas and Its Opportunities—A Review. Front. Environ. Sci. Eng. 2018, 12, 14. [Google Scholar] [CrossRef]
- Sahota, S.; Shah, G.; Ghosh, P.; Kapoor, R.; Sengupta, S.; Singh, P.; Vijay, V.; Sahay, A.; Vijay, V.K.; Thakur, I.S. Review of Trends in Biogas Upgradation Technologies and Future Perspectives. Bioresour. Technol. Rep. 2018, 1, 79–88. [Google Scholar] [CrossRef]
- Bolzonella, D.; Pavan, P.; Mace, S.; Cecchi, F. Dry Anaerobic Digestion of Differently Sorted Organic Municipal Solid Waste: A Full-Scale Experience. Water Sci. Technol. 2006, 53, 23–32. [Google Scholar] [CrossRef]
- Giuliano, A.; Catizzone, E.; Freda, C.; Cornacchia, G. Valorization of OFMSW Digestate-Derived Syngas toward Methanol, Hydrogen, or Electricity: Process Simulation and Carbon Footprint Calculation. Processes 2020, 8, 526. [Google Scholar] [CrossRef]
- Hagos, K.; Zong, J.; Li, D.; Liu, C.; Lu, X. Anaerobic Co-Digestion Process for Biogas Production: Progress, Challenges and Perspectives. Renew. Sustain. Energy Rev. 2017, 76, 1485–1496. [Google Scholar] [CrossRef]
- Rajendran, K.; Drielak, E.; Sudarshan Varma, V.; Muthusamy, S.; Kumar, G. Updates on the Pretreatment of Lignocellulosic Feedstocks for Bioenergy Production—A Review. Biomass Conv. Bioref. 2018, 8, 471–483. [Google Scholar] [CrossRef]
- Dasgupta, A.; Chandel, M.K. Enhancement of Biogas Production from Organic Fraction of Municipal Solid Waste Using Hydrothermal Pretreatment. Bioresour. Technol. Rep. 2019, 7, 100281. [Google Scholar] [CrossRef]
- Ionescu, G.; Rada, E.C.; Ragazzi, M.; Mărculescu, C.; Badea, A.; Apostol, T. Integrated Municipal Solid Waste Scenario Model Using Advanced Pretreatment and Waste to Energy Processes. Energy Convers. Manag. 2013, 76, 1083–1092. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, R.; El-Mashad, H.M.; Dong, R. Effect of Feed to Inoculum Ratios on Biogas Yields of Food and Green Wastes. Bioresour. Technol. 2009, 100, 5103–5108. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yan, W.; Sheng, K.; Sanati, M. Comparison of High-Solids to Liquid Anaerobic Co-Digestion of Food Waste and Green Waste. Bioresour. Technol. 2014, 154, 215–221. [Google Scholar] [CrossRef] [Green Version]
- Ho, M.C.; Ong, V.Z.; Wu, T.Y. Potential Use of Alkaline Hydrogen Peroxide in Lignocellulosic Biomass Pretreatment and Valorization—A Review. Renew. Sustain. Energy Rev. 2019, 112, 75–86. [Google Scholar] [CrossRef]
- Mirmohamadsadeghi, S.; Karimi, K.; Zamani, A.; Amiri, H.; Horváth, I.S. Enhanced Solid-State Biogas Production from Lignocellulosic Biomass by Organosolv Pretreatment. BioMed Res. Int. 2014, 2014, e350414. [Google Scholar] [CrossRef]
- Abraham, A.; Mathew, A.K.; Park, H.; Choi, O.; Sindhu, R.; Parameswaran, B.; Pandey, A.; Park, J.H.; Sang, B.-I. Pretreatment Strategies for Enhanced Biogas Production from Lignocellulosic Biomass. Bioresour. Technol. 2020, 301, 122725. [Google Scholar] [CrossRef]
- Kumar, G.; Dharmaraja, J.; Arvindnarayan, S.; Shoban, S.; Bakonyi, P.; Saratale, G.D.; Nemestóthy, N.; Bélafi–Bakó, K.; Yoon, J.; Kim, S. A Comprehensive Review on Thermochemical, Biological, Biochemical and Hybrid Conversion Methods of Bio-Derived Lignocellulosic Molecules into Renewable Fuels. Fuel 2019, 251, 352–367. [Google Scholar] [CrossRef]
- Baruah, J.; Nath, B.K.; Sharma, R.; Kumar, S.; Deka, R.C.; Baruah, D.C.; Kalita, E. Recent Trends in the Pretreatment of Lignocellulosic Biomass for Value-Added Products. Front. Energy Res. 2018, 6, 141. [Google Scholar] [CrossRef]
- Tocco, D.; Carucci, C.; Monduzzi, M.; Salis, A.; Sanjust, E. Recent Developments in the Delignification and Exploitation of Grass Lignocellulosic Biomass. ACS Sustain. Chem. Eng. 2021, 9, 2412–2432. [Google Scholar] [CrossRef]
- Robak, K.; Balcerek, M. Review of Second Generation Bioethanol Production from Residual Biomass. Food Technol. Biotechnol. 2018, 56, 174–187. [Google Scholar] [CrossRef]
- Mutschlechner, M.; Illmer, P.; Wagner, A.O. Biological Pre-Treatment: Enhancing Biogas Production Using the Highly Cellulolytic Fungus Trichoderma Viride. Waste Manag. 2015, 43, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Ponnusamy, V.K.; Nguyen, D.D.; Dharmaraja, J.; Shobana, S.; Banu, J.R.; Saratale, R.G.; Chang, S.W.; Kumar, G. A Review on Lignin Structure, Pretreatments, Fermentation Reactions and Biorefinery Potential. Bioresour. Technol. 2019, 271, 462–472. [Google Scholar] [CrossRef] [PubMed]
- Hassan, S.S.; Williams, G.A.; Jaiswal, A.K. Emerging Technologies for the Pretreatment of Lignocellulosic Biomass. Bioresour. Technol. 2018, 262, 310–318. [Google Scholar] [CrossRef] [Green Version]
- Sharma, H.K.; Xu, C.; Qin, W. Biological Pretreatment of Lignocellulosic Biomass for Biofuels and Bioproducts: An Overview. Waste Biomass Valor. 2019, 10, 235–251. [Google Scholar] [CrossRef]
- Wagner, A.O.; Lackner, N.; Mutschlechner, M.; Prem, E.M.; Markt, R.; Illmer, P. Biological Pretreatment Strategies for Second-Generation Lignocellulosic Resources to Enhance Biogas Production. Energies 2018, 11, 1797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rencoret, J.; Pereira, A.; del Río, J.C.; Martínez, Á.T.; Gutiérrez, A. Delignification and Saccharification Enhancement of Sugarcane Byproducts by a Laccase-Based Pretreatment. ACS Sustain. Chem. Eng. 2017, 5, 7145–7154. [Google Scholar] [CrossRef]
- Wang, F.; Xu, L.; Zhao, L.; Ding, Z.; Ma, H.; Terry, N. Fungal Laccase Production from Lignocellulosic Agricultural Wastes by Solid-State Fermentation: A Review. Microorganisms 2019, 7, 665. [Google Scholar] [CrossRef] [Green Version]
- Kainthola, J.; Podder, A.; Fechner, M.; Goel, R. An Overview of Fungal Pretreatment Processes for Anaerobic Digestion: Applications, Bottlenecks and Future Needs. Bioresour. Technol. 2021, 321, 124397. [Google Scholar] [CrossRef]
- Rouches, E.; Zhou, S.; Sergent, M.; Raouche, S.; Carrere, H. Influence of White-Rot Fungus Polyporus Brumalis BRFM 985 Culture Conditions on the Pretreatment Efficiency for Anaerobic Digestion of Wheat Straw. Biomass Bioenergy 2018, 110, 75–79. [Google Scholar] [CrossRef]
- Tišma, M.; Planinić, M.; Bucić-Kojić, A.; Panjičko, M.; Zupančič, G.D.; Zelić, B. Corn Silage Fungal-Based Solid-State Pretreatment for Enhanced Biogas Production in Anaerobic Co-Digestion with Cow Manure. Bioresour. Technol. 2018, 253, 220–226. [Google Scholar] [CrossRef]
- Zhao, J.; Ge, X.; Vasco-Correa, J.; Li, Y. Fungal Pretreatment of Unsterilized Yard Trimmings for Enhanced Methane Production by Solid-State Anaerobic Digestion. Bioresour. Technol. 2014, 158, 248–252. [Google Scholar] [CrossRef]
- Wyman, V.; Henríquez, J.; Palma, C.; Carvajal, A. Lignocellulosic Waste Valorisation Strategy through Enzyme and Biogas Production. Bioresour. Technol. 2018, 247, 402–411. [Google Scholar] [CrossRef]
- Mustafa, A.M.; Poulsen, T.G.; Sheng, K. Fungal Pretreatment of Rice Straw with Pleurotus Ostreatus and Trichoderma Reesei to Enhance Methane Production under Solid-State Anaerobic Digestion. Appl. Energy 2016, 180, 661–671. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhao, J.; Xu, F.; Li, Y. Pretreatment of Lignocellulosic Biomass for Enhanced Biogas Production. Prog. Energy Combust. Sci. 2014, 42, 35–53. [Google Scholar] [CrossRef]
- Christian, V.; Shrivastava, R.; Shukla, D.; Modi, H.A.; Vyas, B.R.M. Degradation of Xenobiotic Compounds by Lignin-Degrading White-Rot Fungi: Enzymology and Mechanisms Involved. IJEB 2005, 43, 301–312. [Google Scholar]
- Kaal, E.E.J.; Field, J.A.; Joyce, T.W. Increasing Ligninolytic Enzyme Activities in Several White-Rot Basidiomycetes by Nitrogen-Sufficient Media. Bioresour. Technol. 1995, 53, 133–139. [Google Scholar] [CrossRef]
- Tien, M.; Kirk, T.K. Lignin-Degrading Enzyme from the Hymenomycete Phanerochaete Chrysosporium Burds. Science 1983, 221, 661–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glenn, J.K.; Morgan, M.A.; Mayfield, M.B.; Kuwahara, M.; Gold, M.H. An Extracellular H2O2-Requiring Enzyme Preparation Involved in Lignin Biodegradation by the White Rot Basidiomycete Phanerochaete Chrysosporium. Biochem. Biophys. Res. Commun. 1983, 114, 1077–1083. [Google Scholar] [CrossRef]
- Kocher, G.S.; Kaur, P.; Taggar, M.S. An Overview of Pretreatment Processes with Special Reference to Biological Pretreatment for Rice Straw Delignification. Curr. Biochem. Eng. 2017, 4, 151–163. [Google Scholar] [CrossRef]
- Chandel, A.K.; Gonçalves, B.C.M.; Strap, J.L.; da Silva, S.S. Biodelignification of Lignocellulose Substrates: An Intrinsic and Sustainable Pretreatment Strategy for Clean Energy Production. Crit. Rev. Biotechnol. 2015, 35, 281–293. [Google Scholar] [CrossRef]
- Kang, B.R.; Kim, S.B.; Song, H.A.; Lee, T.K. Accelerating the Biodegradation of High-Density Polyethylene (HDPE) Using Bjerkandera Adusta TBB-03 and Lignocellulose Substrates. Microorganisms 2019, 7, 304. [Google Scholar] [CrossRef] [Green Version]
- Bouacem, K.; Rekik, H.; Jaouadi, N.Z.; Zenati, B.; Kourdali, S.; El Hattab, M.; Badis, A.; Annane, R.; Bejar, S.; Hacene, H.; et al. Purification and Characterization of Two Novel Peroxidases from the Dye-Decolorizing Fungus Bjerkandera Adusta Strain CX-9. Int. J. Biol. Macromol. 2018, 106, 636–646. [Google Scholar] [CrossRef]
- Davila-Vazquez, G.; Tinoco, R.; Pickard, M.A.; Vazquez-Duhalt, R. Transformation of Halogenated Pesticides by Versatile Peroxidase from Bjerkandera Adusta. Enzym. Microb. Technol. 2005, 36, 223–231. [Google Scholar] [CrossRef]
- Costa, S.; Dedola, D.G.; Pellizzari, S.; Blo, R.; Rugiero, I.; Pedrini, P.; Tamburini, E. Lignin Biodegradation in Pulp-and-Paper Mill Wastewater by Selected White Rot Fungi. Water 2017, 9, 935. [Google Scholar] [CrossRef] [Green Version]
- Tian, S.-Q.; Zhao, R.-Y.; Chen, Z.-C. Review of the Pretreatment and Bioconversion of Lignocellulosic Biomass from Wheat Straw Materials. Renew. Sustain. Energy Rev. 2018, 91, 483–489. [Google Scholar] [CrossRef]
- Dinis, M.J.; Bezerra, R.M.F.; Nunes, F.; Dias, A.A.; Guedes, C.V.; Ferreira, L.M.M.; Cone, J.W.; Marques, G.S.M.; Barros, A.R.N.; Rodrigues, M.A.M. Modification of Wheat Straw Lignin by Solid State Fermentation with White-Rot Fungi. Bioresour. Technol. 2009, 100, 4829–4835. [Google Scholar] [CrossRef] [Green Version]
- Tamburini, E.; Bernardi, T.; Castaldelli, G.; Tumiatti, G.; Ferro, S. Green Electrochemical Approach for Delignification of Wheat Straw in Second-Generation Bioethanol Production. Energy Environ. Sci. 2011, 4, 551–557. [Google Scholar] [CrossRef]
- Asghar, U.; Irfan, M.; Iram, M.; Huma, Z.; Nelofer, R.; Nadeem, M.; Syed, Q. Effect of Alkaline Pretreatment on Delignification of Wheat Straw. Nat. Prod. Res. 2015, 29, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Knierim, B.; Manisseri, C.; Arora, R.; Scheller, H.V.; Auer, M.; Vogel, K.P.; Simmons, B.A.; Singh, S. Comparison of Dilute Acid and Ionic Liquid Pretreatment of Switchgrass: Biomass Recalcitrance, Delignification and Enzymatic Saccharification. Bioresour. Technol. 2010, 101, 4900–4906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Hu, J.; Lee, D.-J. Biogas from Anaerobic Digestion Processes: Research Updates. Renew. Energy 2016, 98, 108–119. [Google Scholar] [CrossRef]
- Huang, X.; Yun, S.; Zhu, J.; Du, T.; Zhang, C.; Li, X. Mesophilic Anaerobic Co-Digestion of Aloe Peel Waste with Dairy Manure in the Batch Digester: Focusing on Mixing Ratios and Digestate Stability. Bioresour. Technol. 2016, 218, 62–68. [Google Scholar] [CrossRef]
- TAPPI T 222—Acid-Insoluble Lignin in Wood and Pulp|Engineering360. Available online: https://standards.globalspec.com/std/10402544/TAPPI%20T%20222 (accessed on 15 March 2021).
- Mauer, L.J.; Bradley, R.L. Moisture and Total Solids Analysis. In Food Analysis; Nielsen, S.S., Ed.; Food Science Text Series; Springer: Cham, Switzerland, 2017; pp. 257–286. ISBN 9783319457765. [Google Scholar]
- Cabbai, V.; Ballico, M.; Aneggi, E.; Goi, D. BMP Tests of Source Selected OFMSW to Evaluate Anaerobic Codigestion with Sewage Sludge. Waste Manag. 2013, 33, 1626–1632. [Google Scholar] [CrossRef] [PubMed]
- Langsdorf, A.; Volkmar, M.; Holtmann, D.; Ulber, R. Material Utilization of Green Waste: A Review on Potential Valorization Methods. Bioresour. Bioprocess. 2021, 8, 19. [Google Scholar] [CrossRef]
- Sun, F.; Li, J.; Yuan, Y.; Yan, Z.; Liu, X. Effect of Biological Pretreatment with Trametes Hirsuta Yj9 on Enzymatic Hydrolysis of Corn Stover. Int. Biodeterior. Biodegrad. 2011, 65, 931–938. [Google Scholar] [CrossRef]
- Vasco-Correa, J.; Ge, X.; Li, Y. Fungal Pretreatment of Non-Sterile Miscanthus for Enhanced Enzymatic Hydrolysis. Bioresour. Technol. 2016, 203, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Vasco-Correa, J.; Shah, A. Techno-Economic Bottlenecks of the Fungal Pretreatment of Lignocellulosic Biomass. Fermentation 2019, 5, 30. [Google Scholar] [CrossRef] [Green Version]
- Heinfling, A.; Martínez, M.J.; Martínez, A.T.; Bergbauer, M.; Szewzyk, U. Purification and Characterization of Peroxidases from the Dye-Decolorizing Fungus Bjerkandera Adusta. FEMS Microbiol. Lett. 1998, 165, 43–50. [Google Scholar] [CrossRef]
- Quiroz-Castañeda, R.E.; Balcázar-López, E.; Dantán-González, E.; Martinez, A.; Folch-Mallol, J.; Martínez Anaya, C. Characterization of Cellulolytic Activities of Bjerkandera Adusta and Pycnoporus Sanguineus on Solid Wheat Straw Medium. Electron. J. Biotechnol. 2009, 12, 5–6. [Google Scholar]
- Angelidaki, I.; Boe, K.; Ellegaard, L. Effect of Operating Conditions and Reactor Configuration on Efficiency of Full-Scale Biogas Plants. Water Sci. Technol. 2005, 52, 189–194. [Google Scholar] [CrossRef]
- Anukam, A.; Mohammadi, A.; Naqvi, M.; Granström, K. A Review of the Chemistry of Anaerobic Digestion: Methods of Accelerating and Optimizing Process Efficiency. Processes 2019, 7, 504. [Google Scholar] [CrossRef] [Green Version]
- Seruga, P.; Krzywonos, M.; Seruga, A.; Niedźwiecki, Ł.; Pawlak-Kruczek, H.; Urbanowska, A. Anaerobic Digestion Performance: Separate Collected vs. Mechanical Segregated Organic Fractions of Municipal Solid Waste as Feedstock. Energies 2020, 13, 3768. [Google Scholar] [CrossRef]
- Müller, H.W.; Trösch, W. Screening of White-Rot Fungi for Biological Pretreatment of Wheat Straw for Biogas Production. Appl. Microbiol. Biotechnol. 1986, 24, 180–185. [Google Scholar] [CrossRef]
- Kainthola, J.; Kalamdhad, A.S.; Goud, V.V.; Goel, R. Fungal Pretreatment and Associated Kinetics of Rice Straw Hydrolysis to Accelerate Methane Yield from Anaerobic Digestion. Bioresour. Technol. 2019, 286, 121368. [Google Scholar] [CrossRef]
- Albornoz, S.; Wyman, V.; Palma, C.; Carvajal, A. Understanding of the Contribution of the Fungal Treatment Conditions in a Wheat Straw Biorefinery That Produces Enzymes and Biogas. Biochem. Eng. J. 2018, 140, 140–147. [Google Scholar] [CrossRef]
- Liu, S.; Wu, S.; Pang, C.; Li, W.; Dong, R. Microbial Pretreatment of Corn Stovers by Solid-State Cultivation of Phanerochaete Chrysosporium for Biogas Production. Appl. Biochem. Biotechnol. 2014, 172, 1365–1376. [Google Scholar] [CrossRef] [PubMed]
Substrate | OFMSW | GW |
---|---|---|
TS (%) | 18.1 ± 1.8 | 98.3 ± 3.9 |
VS (%) | 16.8 ± 1.7 | 84.5 ± 3.8 |
COD (%) | 17.6 ± 1.9 | 89.1 ± 3.7 |
TKN (%) | 0.8 ± 0.1 | 2.05 ± 0.3 |
P tot (%) | 0.0 ± 0.0 | NA |
C/N | 20.7 | 43.5 |
VS/TS | 92.8 | 86.0 |
Lignin | NA | 23.8 ± 0.57 |
Treatment | Residual Lignin (%) | Yield of Delignification (%) | Time of Exposition | Temperature (°C) | Use of Chemicals | Rinsing Water (l) |
---|---|---|---|---|---|---|
BA | 13.7 ± 0.28 | 42% | 7 days | 24 °C | no | 0 |
Chlorine | 17.1 ± 0.31 | 28% | 60 min | 25 °C | yes | 5 |
Dil. sulfuric acid | 17.9 ± 0.32 | 25% | 45 min | 121 °C | yes | up to pH = 7 |
Sodium hydroxide | 5.2 ± 0.25 | 78% | 60 min | 121 °C | yes | up to pH = 7 |
Treatment | TS ** (%) | VS *** (%) |
---|---|---|
BA * | 92.4 | 79.5 |
Chlorine | 88.8 | 75.3 |
Dil. sulfuric acid | 89.6 | 81.5 |
Sodium hydroxide | 73.2 | 68.1 |
Substrate | Productivity (Nm3/ton FM * day) | BMP (Nm3 CH4/ton VS) |
---|---|---|
OFMSW | 145 | 141 |
Untreated GW | 102 | 95 |
OFMSW + untreated GW | 125 | 146 |
OFMSW + GW treated with BA | 283 | 289 |
Fungal Strain | Substrate for AD | Glucose Addition in Fungal Pretreatment (g) | Residual Lignin | BMP Improvements by Fungal Pretreatment | Ref. |
---|---|---|---|---|---|
Pleurotus florida | 30 days pretreated wheat straw + manure | - | 9.8% | 9.8% | [77] |
Pleurotus florida | 60 days pretreated wheat straw + manure | - | 8.2% | 18.2% | [77] |
Pleurotus florida | 90 days pretreated wheat straw + manure | - | 8.7% | 27.9% | [77] |
Ganoderma adspersum | 12 days pretreated wheat straw | 200 | - | 13% | [48] |
Trametes sp. | 12 days pretreated wheat straw | 50–200 | - | 15–56% | [48] |
Dichostereum effuscatum | 12 days pretreated wheat straw | 50 | - | 29% | [48] |
Pleurotus eringii | 10 days pretreated corn stover | - | - | 19% | [51] |
Pleurotus ostreatus | 5 weeks pretreated rice straw | - | 11.6% | 64% | [78] |
Phanerochaete chrysosporium | 5 weeks pretreated rice straw | - | 8.9% | 122% | [78] |
Ganoderma lucidum | 5 weeks pretreated rice straw | - | 12.2% | 88% | [78] |
Trichoderma reseeei | 10 days pretreated rice straw | - | 13% | 9–28% | [52] |
Pleurotus ostreatus | 15 days pretreated wheat straw | - | 8.2% * | 27% | [79] |
Pleurotus ostreatus | 30 days pretreated wheat straw | - | 16.8% * | 33% | [79] |
Trametes versicolor | 7 days pretreated corn silage + manure | - | - | 41% | [49] |
Phanerochaete chrysosporium | 30 days pretreated corn stover | - | 49% * | 33% | [80] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Semeraro, B.; Summa, D.; Costa, S.; Zappaterra, F.; Tamburini, E. Bio-Delignification of Green Waste (GW) in Co-Digestion with the Organic Fraction of Municipal Solid Waste (OFMSW) to Enhance Biogas Production. Appl. Sci. 2021, 11, 6061. https://doi.org/10.3390/app11136061
Semeraro B, Summa D, Costa S, Zappaterra F, Tamburini E. Bio-Delignification of Green Waste (GW) in Co-Digestion with the Organic Fraction of Municipal Solid Waste (OFMSW) to Enhance Biogas Production. Applied Sciences. 2021; 11(13):6061. https://doi.org/10.3390/app11136061
Chicago/Turabian StyleSemeraro, Bruno, Daniela Summa, Stefania Costa, Federico Zappaterra, and Elena Tamburini. 2021. "Bio-Delignification of Green Waste (GW) in Co-Digestion with the Organic Fraction of Municipal Solid Waste (OFMSW) to Enhance Biogas Production" Applied Sciences 11, no. 13: 6061. https://doi.org/10.3390/app11136061
APA StyleSemeraro, B., Summa, D., Costa, S., Zappaterra, F., & Tamburini, E. (2021). Bio-Delignification of Green Waste (GW) in Co-Digestion with the Organic Fraction of Municipal Solid Waste (OFMSW) to Enhance Biogas Production. Applied Sciences, 11(13), 6061. https://doi.org/10.3390/app11136061