Biogas Plants in Renewable Energy Systems—A Systematic Review of Modeling Approaches of Biogas Production
Abstract
:1. Introduction
- -
- How can electricity production be adjusted to electricity demand profiles?
- -
- How can biogas plants contribute to energy sector coupling?
- -
- Which pathway of biogas exploitation is most beneficial for the energy system?
- -
- Which pathway of biogas exploitation offers a business model for the operator?
- -
- What is the carbon footprint of biogas-based energy products?
- -
- What feedstock mixture is most sustainable and are there regional limitations?
- -
- How can biogas plants be included in regional energy systems?
2. Materials and Methods
2.1. Literature Search
2.2. Model Categorization
3. Results
3.1. Energy System Modeling
3.2. Regional Potential Modeling
3.3. GHG Emission Modeling
3.4. Dynamic Biogas Process Modeling
3.4.1. White Box Biogas Process Models
3.4.2. Gray Box Biogas Process Models
3.4.3. Black Box Biogas Process Models
3.5. Overview of Classified Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chmiel, H. Bioprozesstechnik; G. Fischer: Stuttgart, Germany, 2011. [Google Scholar]
- Kapoor, R.; Ghosh, P.; Kumar, M.; Vijay, V.K. Evaluation of biogas upgrading technologies and future perspectives: A review. Environ. Sci. Pollut. Res. Int. 2019, 26, 11631–11661. [Google Scholar] [CrossRef]
- Thrän, D.; Schaubach, K.; Majer, S.; Horschig, T. Governance of sustainability in the German biogas sector—Adaptive management of the Renewable Energy Act between agriculture and the energy sector. Energy Sustain. Soc. 2020, 10. [Google Scholar] [CrossRef]
- Trommler, M.; Dotzauer, M.; Hennig, C. Flexibilisierung von Biogasanlagen in Deutschland: Ein Überblick zu technischen Ansätzen, Rechtlichen Rahmen und Bedeutung für das Energiesystem; DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH: Leizpig, Germany, 2016. [Google Scholar]
- Fachagentur Nachwachsende Rohstoffe e.V. (FNR) Agency for Renewable Resources. In Bioenergy in Germany Facts and Figures 2020: Solid Fuels, Biofuels, Biogas; Fachagentur Nachwachsende Rohstoffe e.V.: Gülzow, Germany, 2020. [Google Scholar]
- Biernacki, P.; Steinigeweg, S.; Borchert, A.; Uhlenhut, F.; Brehm, A. Application of Anaerobic Digestion Model No. 1 for describing an existing biogas power plant. Biomass Bioenergy 2013, 59, 441–447. [Google Scholar] [CrossRef]
- Page, D.I.; Hickey, K.L.; Narula, R.; Main, A.L.; Grimberg, S.J. Modeling anaerobic digestion of dairy manure using the IWA Anaerobic Digestion Model no. 1 (ADM1). Water Sci. Technol. 2008, 58, 689–695. [Google Scholar] [CrossRef] [PubMed]
- Astals, S.; Ariso, M.; Galí, A.; Mata-Alvarez, J. Co-digestion of pig manure and glycerine: Experimental and modelling study. J. Environ. Manag. 2011, 92, 1091–1096. [Google Scholar] [CrossRef] [PubMed]
- Blesgen, A.; Hass, V.C. Operator training simulator for anaerobic digestion processes. IFAC Proc. Vol. 2010, 43, 353–358. [Google Scholar] [CrossRef]
- Gaida, D.; Wolf, C.; Bongards, M. MATLAB Toolbox for biogas plant modelling and optimization. In Proceedings of the Progress in Biogas II, Stuttgart-Hohenheim, Germany, 30 March–1 April 2011. [Google Scholar]
- Hill, D.T.; Barth, C.L. A dynamic model for simulation of animal waste digestion. Water Pollut. Control Fed. 1977, 49, 2129–2143. [Google Scholar]
- Andrews, J.F.; Graef, S.P. Dynamic modeling and simulation of the anaerobic digestion process. Anaerob. Biol. Treat. Process. 1971, 105, 126–162. [Google Scholar] [CrossRef]
- Andrews, J.F. Dynamic model of the anaerobic digestion process. J. Sanit. Eng. Div. 1969, 95, 95–116. [Google Scholar] [CrossRef]
- Korberg, A.D.; Skov, I.R.; Mathiesen, B.V. The role of biogas and biogas-derived fuels in a 100% renewable energy system in Denmark. Energy 2020, 199, 117426. [Google Scholar] [CrossRef]
- Dressler, D.; Loewen, A.; Nelles, M. Life cycle assessment of the supply and use of bioenergy: Impact of regional factors on biogas production. Int. J. Life Cycle Assess. 2012, 17, 1104–1115. [Google Scholar] [CrossRef]
- Silva, S.; Alçada-Almeida, L.; Dias, L.C. Multiobjective programming for sizing and locating biogas plants: A model and an application in a region of Portugal. Comput. Oper. Res. 2017, 83, 189–198. [Google Scholar] [CrossRef]
- Pavlostathis, S.G.; Giraldo-Gomez, E. Kinetics of anaerobic treatment: A critical review. Crit. Rev. Environ. Control 1991, 21, 411–490. [Google Scholar] [CrossRef]
- Kythreotou, N.; Florides, G.; Tassou, S.A. A review of simple to scientific models for anaerobic digestion. Renew. Energy 2014, 71, 701–714. [Google Scholar] [CrossRef]
- Thorin, E.; Nordlander, E.; Lindmark, J.; Dahlquist, E.; Yan, J.; Bel Fdhila, R. Modeling of the biogas production process—A review. In Proceedings of the International Conference on Applied Energy ICAE, Suzhou, China, 5–8 July 2012. [Google Scholar]
- Donoso-Bravo, A.; Mailier, J.; Martin, C.; Rodríguez, J.; Aceves-Lara, C.A.; Vande Wouwer, A. Model selection, identification and validation in anaerobic digestion: A review. Water Res. 2011, 45, 5347–5364. [Google Scholar] [CrossRef]
- Ringkjøb, H.-K.; Haugan, P.M.; Solbrekke, I.M. A review of modelling tools for energy and electricity systems with large shares of variable renewables. Renew. Sustain. Energy Rev. 2018, 96, 440–459. [Google Scholar] [CrossRef]
- Salvador, R.; Barros, M.V.; Rosário, J.G.D.P.D.; Piekarski, C.M.; Luz, L.M.; Francisco, A.C. Life cycle assessment of electricity from biogas: A systematic literature review. Environ. Prog. Sustain. Energy 2019, 38, 13133. [Google Scholar] [CrossRef]
- Ingrao, C.; Bacenetti, J.; Adamczyk, J.; Ferrante, V.; Messineo, A.; Huisingh, D. Investigating energy and environmental issues of agro-biogas derived energy systems: A comprehensive review of Life Cycle Assessments. Renew. Energy 2019, 136, 296–307. [Google Scholar] [CrossRef]
- Ertem-Kappler, F.C. Life Cycle Assessment and Modelling Approaches as a Combined Evaluation Tool for Sustainable Control Strategies at Biogas Plants. Ph.D. Thesis, Technische Universität Berlin, Berlin, Germany, 2019. [Google Scholar]
- Hijazi, O.; Munro, S.; Zerhusen, B.; Effenberger, M. Review of life cycle assessment for biogas production in Europe. Renew. Sustain. Energy Rev. 2016, 54, 1291–1300. [Google Scholar] [CrossRef]
- Esteves, E.M.M.; Herrera, A.M.N.; Esteves, V.P.P.; Morgado, C.d.R.V. Life cycle assessment of manure biogas production: A review. J. Clean. Prod. 2019, 219, 411–423. [Google Scholar] [CrossRef]
- Bacenetti, J.; Sala, C.; Fusi, A.; Fiala, M. Agricultural anaerobic digestion plants: What LCA studies pointed out and what can be done to make them more environmentally sustainable. Appl. Energy 2016, 179, 669–686. [Google Scholar] [CrossRef] [Green Version]
- Meroney, R.N.; Colorado, P.E. CFD simulation of mechanical draft tube mixing in anaerobic digester tanks. Water Res. 2009, 43, 1040–1050. [Google Scholar] [CrossRef]
- Barnert, T.; Piesik, E.; Śliwiński, M. Real-time simulator of agricultural biogas plant. Comput. Electron. Agric. 2014, 108, 1–11. [Google Scholar] [CrossRef]
- Arzate Salgado, J.A. Modeling and Simulation of Biogas Production Based on Anaerobic Digestion of Energy Crops and Manure. Ph.D. Thesis, Technische Universität Berlin, Berlin, Germany, 2018. [Google Scholar]
- IWA Task Group for Mathematical Modelling of Anaerobic Digestion. Anaerobic Digestion Model No. 1 (ADM1); IWA Publishing: London, UK, 2002; ISBN 9781780403052. [Google Scholar]
- Stanescu, L.A.; Robescu, L.D.; Futselaar, H. Biogas production modeling and simulation in low end conditions. In Proceedings of the 2017 International Conference on Energy and Environment (CIEM), Bucharest, Romania, 19–20 October 2017. [Google Scholar]
- Carr, P. How to Read a Paper Efficiently (By Prof. Pete Carr). Available online: https://www.youtube.com/watch?v=IeaD0ZaUJ3Y (accessed on 10 February 2021).
- Isermann, R.; Münchhof, M. Identification of Dynamic Systems: An Introduction with Applications, 2011th ed.; Springer: Berlin, Germany, 2014; ISBN 978-3-642-42267-6. [Google Scholar]
- Tarr, M. Modelling—Choosing a Model. Available online: http://www.idc-online.com/technical_references/pdfs/electronic_engineering/Modelling_Choosing_a_Model.pdf (accessed on 15 February 2021).
- Zhang, P. Industrial control system simulation routines. In Advanced Industrial Control Technology; Elsevier: Amsterdam, The Netherlands, 2010; pp. 781–810. ISBN 9781437778076. [Google Scholar]
- Herbst, A.; Toro, F.; Reitze, F.; Jochem, E. Introduction to energy systems modelling. Swiss J. Econ. Stat. 2012, 148, 111–135. [Google Scholar] [CrossRef] [Green Version]
- Hilpert, S.; Kaldemeyer, C.; Krien, U.; Günther, S.; Wingenbach, C.; Plessmann, G. The Open Energy Modelling Framework (oemof)—A new approach to facilitate open science in energy system modelling. Energy Strategy Rev. 2018, 22, 16–25. [Google Scholar] [CrossRef] [Green Version]
- Möller, C.; Rosenberger, S.; Faulstich, M. Speicherbedarf in energieregionen unter berücksichtigung verschiedener autarkiegrade. In Proceedings of the 9 Internationale Energiewirtschaftstagung an der TU Wien, Vienna, Austria, 19 October 2015. [Google Scholar]
- Möller, C.; Faulstich, M.; Rosenberger, S. Urban-rural relations in renewable electric energy supply—The case of a German energy region. Int. J. Sustai. Energy Plan. Manag. 2019, 21. [Google Scholar] [CrossRef]
- Bamisile, O.; Huang, Q.; Li, J.; Dagbasi, M.; Desire Kemena, A.; Abid, M.; Hu, W. Modelling and performance analysis of an innovative CPVT, wind and biogas integrated comprehensive energy system: An energy and exergy approach. Energy Convers. Manag. 2020, 209, 112611. [Google Scholar] [CrossRef]
- F-Chart Software. EES: Engineering Equation Solver. Available online: http://fchartsoftware.com/ees/index.php/ (accessed on 10 February 2021).
- The Balmorel Open Source Project. Balmorel Energy System Model. Available online: http://www.balmorel.com/ (accessed on 15 February 2021).
- Münster, M.; Meibom, P. Optimization of use of waste in the future energy system. Energy 2011, 36, 1612–1622. [Google Scholar] [CrossRef] [Green Version]
- Department of Development and Planning, Aalborg University. EnergyPLAN—Advanced Energy System Analysis Computer Model. Available online: https://www.energyplan.eu (accessed on 15 February 2021).
- Sveinbjörnsson, D.; Ben Amer-Allam, S.; Hansen, A.B.; Algren, L.; Pedersen, A.S. Energy supply modelling of a low-CO2 emitting energy system: Case study of a Danish municipality. Appl. Energy 2017, 195, 922–941. [Google Scholar] [CrossRef] [Green Version]
- Chiodi, A.; Gargiulo, M.; Rogan, F.; Deane, J.P.; Lavigne, D.; Rout, U.K.; Ó Gallachóir, B.P. Modelling the impacts of challenging 2050 European climate mitigation targets on Ireland’s energy system. Energy Policy 2013, 53, 169–189. [Google Scholar] [CrossRef]
- Weinand, J.M.; Scheller, F.; McKenna, R. Reviewing energy system modelling of decentralized energy autonomy. Energy 2020, 203, 117817. [Google Scholar] [CrossRef]
- Keirstead, J.; Jennings, M.; Sivakumar, A. A review of urban energy system models: Approaches, challenges and opportunities. Renew. Sustain. Energy Rev. 2012, 16, 3847–3866. [Google Scholar] [CrossRef] [Green Version]
- Mirakyan, A.; De Guio, R. Integrated energy planning in cities and territories: A review of methods and tools. Renew. Sustain. Energy Rev. 2013, 22, 289–297. [Google Scholar] [CrossRef]
- Gamarra, C.; Guerrero, J.M. Computational optimization techniques applied to microgrids planning: A review. Renew. Sustain. Energy Rev. 2015, 48, 413–424. [Google Scholar] [CrossRef] [Green Version]
- Scheller, F.; Bruckner, T. Energy system optimization at the municipal level: An analysis of modeling approaches and challenges. Renew. Sustain. Energy Rev. 2019, 105, 444–461. [Google Scholar] [CrossRef]
- Bonham-Carter, G. Geographic Information Systems for Geoscientists: Modelling with GIS, 1st ed.; Pergamon: Oxford, UK, 2010; ISBN 0080418678. [Google Scholar]
- van Haaren, R.; Fthenakis, V. GIS-based wind farm site selection using spatial multi-criteria analysis (SMCA): Evaluating the case for New York State. Renew. Sustain. Energy Rev. 2011, 15, 3332–3340. [Google Scholar] [CrossRef]
- Latinopoulos, D.; Kechagia, K. A GIS-based multi-criteria evaluation for wind farm site selection. A regional scale application in Greece. Renew. Energy 2015, 78, 550–560. [Google Scholar] [CrossRef]
- Batzias, F.A.; Sidiras, D.K.; Spyrou, E.K. Evaluating livestock manures for biogas production: A GIS based method. Renew. Energy 2005, 30, 1161–1176. [Google Scholar] [CrossRef]
- Lovrak, A.; Puksec, T.; Duic, N. A Geographical Information System based approach for assessing the spatial distribution and seasonal variation of biogas production potential from agricultural residues and municipal biowaste. Appl. Energy 2020, 267, 115010. [Google Scholar] [CrossRef]
- Huopana, T.; Song, H.; Kolehmainen, M.; Niska, H. A regional model for sustainable biogas electricity production: A case study from a Finnish province. Appl. Energy 2013, 102, 676–686. [Google Scholar] [CrossRef]
- Höhn, J.; Lehtonen, E.; Rasi, S.; Rintala, J. A Geographical Information System (GIS) based methodology for determination of potential biomasses and sites for biogas plants in southern Finland. Appl. Energy 2014, 113, 1–10. [Google Scholar] [CrossRef]
- Deutsches Institut für Normung. DIN EN ISO 14040, Deutsche Fassung EN ISO 14040:2006 + A1:2020; Beuth Verlag GmbH: Berlin, Germany, 2021. [Google Scholar]
- Deutsches Institut für Normung. DIN EN ISO 14044, Deutsche Fassung EN ISO 14044:2006 + A1:2018 + A2:2020; Beuth Verlag GmbH: Berlin, Germany, 2021. [Google Scholar]
- Klöpffer, W. Background and Future Prospects in Life Cycle Assessment; Springer: Dordrecht, Germany, 2014; ISBN 9789402407815. [Google Scholar]
- Sphera Solutions, Inc. GaBi Solutions. Available online: http://www.gabi-software.com/deutsch/index (accessed on 10 February 2021).
- Lansche, J.; Müller, J. Life cycle assessment of energy generation of biogas fed combined heat and power plants: Environmental impact of different agricultural substrates. Eng. Life Sci. 2012, 12, 313–320. [Google Scholar] [CrossRef]
- Ertem, F.C.; Martínez-Blanco, J.; Finkbeiner, M.; Neubauer, P.; Junne, S. Life cycle assessment of flexibly fed biogas processes for an improved demand-oriented biogas supply. Bioresour. Technol. 2016, 219, 536–544. [Google Scholar] [CrossRef] [PubMed]
- Ecoinvent. Available online: https://www.ecoinvent.org/ (accessed on 15 February 2021).
- PRé Sustainability B.V. SimaPro. Available online: https://simapro.com/ (accessed on 15 February 2021).
- Navickas, K.; Venslauskas, K.; Zuperka, V.; Nekrosius, A.; Kulikauskas, T. Influence of different biomass treatment technologies on efficiency of biogas production. In Proceedings of the 11 International Scientific Conference Engineering for Rural Development, Jelgava, Latvia, 24–25 May 2012. [Google Scholar]
- Jury, C.; Benetto, E.; Koster, D.; Schmitt, B.; Welfring, J. Life Cycle Assessment of biogas production by monofermentation of energy crops and injection into the natural gas grid. Biomass Bioenergy 2010, 34, 54–66. [Google Scholar] [CrossRef]
- ifu Hamburg. Stoffstrommanagement & Ökobilanzen mit der Software Umberto. Available online: https://www.ifu.com/umberto (accessed on 25 March 2021).
- Arzate, J.A.; Kirstein, M.; Ertem, F.C.; Kielhorn, E.; Ramirez Malule, H.; Neubauer, P.; Cruz-Bournazou, M.N.; Junne, S. Anaerobic Digestion Model (AM2) for the Description of Biogas Processes at Dynamic Feedstock Loading Rates. Chem. Ing. Tech. 2017, 89, 686–695. [Google Scholar] [CrossRef]
- Bernard, O.; Hadj-Sadok, Z.; Dochain, D.; Genovesi, A.; Steyer, J.P. Dynamical model development and parameter identification for an anaerobic wastewater treatment process. Biotechnol. Bioeng. 2001, 75, 424–438. [Google Scholar] [CrossRef]
- Hill, D.T. Design of Digestion Systems for Maximum Methane Production. Trans. ASAE 1982, 25, 226–230. [Google Scholar] [CrossRef]
- Batstone, D.J.; Keller, J.; Steyer, J.P. A review of ADM1 extensions, applications, and analysis: 2002–2005. Water Sci. Technol. 2006, 54, 1–10. [Google Scholar] [CrossRef]
- ifak—Institut für Automation und Kommunikation. SIMBA#Biogas. Available online: https://www.ifak.eu/de/produkte/simba-biogas (accessed on 10 February 2021).
- Wett, B.; Schoen, M.; Phothilangka, P.; Wackerle, F.; Insam, H. Model-based design of an agricultural biogas plant: Application of anaerobic digestion model no. 1 for an improved four chamber scheme. Water Sci. Technol. 2007, 55, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Eawag Aquatic Research. Software. Available online: https://www.eawag.ch/de/abteilung/siam/software/ (accessed on 10 February 2021).
- Ersahin, M.E. Modeling the dynamic performance of full-scale anaerobic primary sludge digester using Anaerobic Digestion Model No. 1 (ADM1). Bioprocess Biosyst. Eng. 2018, 41, 1539–1545. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Chen, Z.; Wang, X.; Huo, C.; Hu, Z.; Xiao, B.; Hu, M. Application of ADM1 for modeling of biogas production from anaerobic digestion of Hydrilla verticillata. Bioresour. Technol. 2016, 211, 101–107. [Google Scholar] [CrossRef]
- Jeppsson, U. Investigation of Anaerobic Digestion Alternatives for Henriksdal’s WWTP; Department of Industrial Electrical Engineering and Automation, Lund University: Lund, Sweden, 2007. [Google Scholar]
- Carlini, M.; Castellucci, S.; Mennuni, A.; Selli, S. Simulation of anaerobic digestion processes: Validation of a novel software tool ADM1-based with AQUASIM. Energy Rep. 2020, 6, 102–115. [Google Scholar] [CrossRef]
- Danielsson, O. Modeling and Simulation of Anaerobic Manure Digestion into Biogas. Master’s Thesis, Chalmers University of Technology, Gothenburg, Sweden, 2014. [Google Scholar]
- Rosen, C.; Jeppsson, U. Aspects on ADM1 Implementation within the BSM2 Framework; Department of Industrial Electrical Engineering and Automation, Lund University: Lund, Sweden, 2008. [Google Scholar]
- Morales Garcia, L.A.; Rodriguez Vargas, A.D.; Rojas Cubides, H.E. Computational Model of an Electric Power Generation System based on Biogas obtained from Cattle Manuerodelo. Pist. Educ. 2020, 42, 1091–1110. [Google Scholar]
- Zaher, U.; Buffiere, P.; Steyer, J.P.; Chen, S. A procedure to estimate proximate analysis of mixed organic wastes. Water Environ. Res. 2009, 81, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Brouwer, A.F.; Grimberg, S.J.; Powers, S.E. The Dynamic Anaerobic Reactor & Integrated Energy System (DARIES) model: Model development, validation, and sensitivity analysis. Water Environ. Res. 2012, 84, 2090–2098. [Google Scholar] [CrossRef] [PubMed]
- Gaida, D.; Brito, A.L.S.; Wolf, C.; Bäck, T.; Bongards, M.; McLoone, S. Optimal control of biogas plants using nonlinear model predictive control. In Proceedings of the International Signals and Systems Conference (ISSC 2011), Dublin, Ireland, 23–24 June 2011. [Google Scholar]
- Gaida, D.; Wolf, C.; Meyer, C.; Stuhlsatz, A.; Lippel, J.; Bäck, T.; Bongards, M.; McLoone, S. State estimation for anaerobic digesters using the ADM1. Water Sci. Technol. 2012, 66, 1088–1095. [Google Scholar] [CrossRef]
- Gaida, D.; Wolf, C.; Back, T.; Bongards, M. Nonlinear model predictive substrate feed control of biogas plants. In Proceedings of the 20th Mediterranean Conference on Control & Automation (MED), Barcelona, Spain, 3–6 July 2012. [Google Scholar]
- Glivin, G.; Sekhar, S. Experimental and Analytical Studies on the Utilization of Biowastes Available in an Educational Institution in India. Sustainability 2016, 8, 1128. [Google Scholar] [CrossRef] [Green Version]
- Grim, J.; Nilsson, D.; Hansson, P.-A.; Nordberg, Å. Demand-Orientated Power Production from Biogas: Modeling and Simulations under Swedish Conditions. Energy Fuels 2015, 29, 4066–4075. [Google Scholar] [CrossRef] [Green Version]
- Peters, L.; Biernacki, P.; Quaghebeur, W.; Uhlenhut, F.; Steinigeweg, S. Model-based control for a demand-driven biogas production to cover residual load rises. Bioprocess Biosyst. Eng. 2019, 42, 1829–1841. [Google Scholar] [CrossRef]
- Ficara, E.; Hassam, S.; Allegrini, A.; Leva, A.; Malpei, F.; Ferretti, G. Anaerobic Digestion Models: A Comparative Study. IFAC Proc. Vol. 2012, 45, 1052–1057. [Google Scholar] [CrossRef]
- Ericsson, N.; Nordberg, Å.; Berglund, M. Biogas plant management decision support—A temperature and time-dependent dynamic methane emission model for digestate storages. Bioresour. Technol. Rep. 2020, 11, 100454. [Google Scholar] [CrossRef]
- Rieke, C.; Stollenwerk, D.; Dahmen, M.; Pieper, M. Modeling and optimization of a biogas plant for a demand-driven energy supply. Energy 2018, 145, 657–664. [Google Scholar] [CrossRef]
- Weinrich, S. Praxisnahe Modellierung von Biogasanlagen. Ph.D. Thesis, Universität Rostock, Rostock, Germany, 2017. [Google Scholar]
- Winkler, M.; Mauky, E.; Weinrich, S. Model-based process optimization of biogas plant operation. In Proceedings of the IV CMP International Conference on Monitoring & Process Control of Anaerobic Digestion Plants, Leipzig, Germany, 26–27 March 2019. [Google Scholar]
- Mauky, E.; Weinrich, S.; Nägele, H.-J.; Jacobi, H.F.; Liebetrau, J.; Nelles, M. Model Predictive Control for Demand-Driven Biogas Production in Full Scale. Chem. Eng. Technol. 2016, 39, 652–664. [Google Scholar] [CrossRef]
- Zepter, J.M.; Gabderakhmanova, T.; Andreasen, K.M.; Boesgaard, K.; Marinelli, M. Biogas Plant Modelling for Flexibility Provision in the Power System of Bornholm Island. In Proceedings of the 2020 55th International Universities Power Engineering Conference (UPEC), Torino, Italy, 1–4 September 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6, ISBN 978-1-7281-1078-3. [Google Scholar]
- Gökgöz, F.; Winkler, M.; Barchmann, T.; Weinrich, S.; Liebetrau, J.; Nelles, M. Combining Electricity and Fuel Supply: Operational Strategies for Biogas Plants. Chem. Eng. Technol. 2021, 44, 183–193. [Google Scholar] [CrossRef]
- Saeed, M.; Fawzy, S.; El-Saadawi, M. Modeling and simulation of biogas-fueled power system. Int. J. Green Energy 2019, 16, 125–151. [Google Scholar] [CrossRef]
- Castellanos, J.G.; Walker, M.; Poggio, D.; Pourkashanian, M.; Nimmo, W. Modelling an off-grid integrated renewable energy system for rural electrification in India using photovoltaics and anaerobic digestion. Renew. Energy 2015, 74, 390–398. [Google Scholar] [CrossRef] [Green Version]
- Axaopoulos, P.; Panagakis, P.; Tsavdaris, A.; Georgakakis, D. Simulation and experimental performance of a solar-heated anaerobic digester. Sol. Energy 2001, 70, 155–164. [Google Scholar] [CrossRef]
- Wang, D.; Duan, Q.; Li, Y.; Tian, X.; Rahman, S. Simulation of a solar-biogas hybrid energy system for heating, fuel supply, and power generation. Int. J. Energy Res. 2017, 41, 1914–1931. [Google Scholar] [CrossRef]
- Calise, F.; Cappiello, F.L.; Dentice d’Accadia, M.; Infante, A.; Vicidomini, M. Modeling of the Anaerobic Digestion of Organic Wastes: Integration of Heat Transfer and Biochemical Aspects. Energies 2020, 13, 2702. [Google Scholar] [CrossRef]
- Blesgen, A. Entwicklung und Einsatz eines Interaktiven Biogas-Echtzeit-Simulators. Ph.D. Thesis, Universität Bremen, Bremen, Germany, 2009. [Google Scholar]
- Hass, V.C. Verbesserung der bioverfahrenstechnischen Ausbildung durch einen “Virtuellen Bioreaktor”. Chem. Ing. Tech. 2005, 77, 161–167. [Google Scholar] [CrossRef]
- de Gracia, M.; Sancho, L.; García-Heras, J.L.; Vanrolleghem, P.; Ayesa, E. Mass and charge conservation check in dynamic models: Application to the new ADM1 model. Water Sci. Technol. 2006, 53, 225–240. [Google Scholar] [CrossRef]
- Abu Qdais, H.; Bani Hani, K.; Shatnawi, N. Modeling and optimization of biogas production from a waste digester using artificial neural network and genetic algorithm. Resour. Conserv. Recycl. 2010, 54, 359–363. [Google Scholar] [CrossRef]
- Gueguim Kana, E.B.; Oloke, J.K.; Lateef, A.; Adesiyan, M.O. Modeling and optimization of biogas production on saw dust and other co-substrates using Artificial Neural network and Genetic Algorithm. Renew. Energy 2012, 46, 276–281. [Google Scholar] [CrossRef]
- Wagner, D.; Schlüter, W. Vorhersage und Regelung der Methanproduktion durch maschinelles Lernen. In Proceedings of the ASIM SST 2020, 25. ASIM Symposium Simulationstechnik, 14–15 October 2020; Deatcu, C., Lückerath, D., Ullrich, O., Durak, U., Eds.; ARGESIM Publisher: Vienna, Austria, 2020; pp. 159–166, ISBN 9783901608933. [Google Scholar]
- Rosen, C.; Vrecko, D.; Gernaey, K.V.; Pons, M.N.; Jeppsson, U. Implementing ADM1 for plant-wide benchmark simulations in Matlab/Simulink. Water Sci. Technol. 2006, 54, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Hochloff, P.; Braun, M. Optimizing biogas plants with excess power unit and storage capacity in electricity and control reserve markets. Biomass Bioenergy 2014, 65, 125–135. [Google Scholar] [CrossRef]
- Saracevic, E.; Woess, D.; Friedl, A.; Miltner, A. Dynamic Simulation of a Biogas Plant Providing Control Energy Reserves. Chem. Eng. Trans. 2017, 61, 931–936. [Google Scholar] [CrossRef]
- Saracevic, E.; Woess, D.; Theuretzbacher, F.; Friedl, A.; Miltner, A. Techno-economic assessment of providing control energy reserves with a biogas plant. Front. Chem. Sci. Eng. 2018, 12, 763–771. [Google Scholar] [CrossRef] [Green Version]
Ref. | View on Biogas Plants | Coding/Software | Biomass Modeling | Region | Additional Modeling |
---|---|---|---|---|---|
[39] | energy system | oemof [38] | annual chemical biogas potential | northwestern Germany | time-dependent electricity production (wind and photovoltaic) and demand |
[40] | energy system | oemof [38] | annual chemical biogas potential | northwestern Germany | time-dependent electricity production (wind and photovoltaic) and demand |
[41] | energy system | Engineering Equation Solver [42] | daily chemical biogas potential based on chicken manure and maize silage | - | electrical energy production (wind, photovoltaic), thermal energy production (photovoltaic), chemical energy production (hydrogen), electrical and thermal energy storage |
[44] | energy system | Balmorel [43] linear optimization (CPLEX-solver) | annual energy potential (stable and increasing 1.3% per year) | Denmark, Germany, Finland, Norway, Sweden | different waste to energy technologies (e.g., gasification, co-combustion) and other technologies (e.g., heater, steam turbine), all with fixed efficiencies |
[14] | energy system | EnergyPLAN [45] | annual chemical biomass potential | Denmark | electrical energy production (wind, photovoltaic, wave, CHP, power plants), biogas purification |
[46] | energy system | Sifre | annual energy potential of manure and straw | Danish municipality | - |
[47] | energy system | TIMES | annual energy potential of degradable feedstock | Ireland | - |
[16] | regional potential | - | electrical energy potential of manure | Northwestern Portugal | - |
[56] | regional potential | - | sectoral biogas potential of manure (cattle, pigs, sheep, poultry) | Greece | chronological sequence since 1970; contemplation of regional gas grid |
[57] | regional potential | - | time-dependent (seasons) biogas potential of agricultural residues and municipal waste | Croatia | residue-to-product ratios, sustainable removal rates |
[58] | regional potential | - | methane potential of manure, grass silage, municipal waste | Finland | Maximum feasible use of regional feedstock due to 30-day HRT; optimizing GHG emissions |
[59] | regional potential | - | municipal waste, sludge, manure, silage and crop residues | Finland | optimizing biogas plant placing |
[15] | GHG emission | GaBi [63] | methane yield of maize | Germany | regional methane yield |
[64] | GHG emission | GaBi [63] | methane yield of manure, maize silage and grass silage with different mixture ratios | - | CHP size and efficiency |
[65] | GHG emission | SimaPro [67] | methane yield of maize, grass, rye silage, chicken manure | - | demand-oriented energy production by HRT for mass flow calculation in digester |
[68] | GHG emission | - | mass-specific energy of grass | - | influence of grass treatment |
[69] | GHG emission | Umberto | biogas yield of cultivated crops (maize, triticale, rye, hemp) | - | emissions of farming, digestion, purification and upgrading to biomethane, transportation |
[24] | GHG emission | SimaPro [67] MATLAB® | dynamic AD model (AMOCO) | Germany | demand-oriented energy production with dynamic AD modeling |
Ref. | View on Biogas Plants | AD Model | Coding/Software | Feedstock | Energy Production | Region | Additional Models |
---|---|---|---|---|---|---|---|
[31] | AD process | ADM1: 24 species, 19 reactions | - | - | - | - | physiochemical digester model |
[75] | AD process | ADM1 | SIMBA#: C#-based | - | - | - | - |
[76] | AD process | ADM1 | SIMBA# | pig manure | - | - | - |
[77] | AD process | ADM1 | AQUASIM: C++-based | - | - | - | - |
[78] | AD process | ADM1 | AQUASIM | sludge | - | - | - |
[79] | AD process | ADM1 | AQUASIM | water thyme | - | - | - |
[80] | AD process | ADM1 | MATLAB® Simulink-code: C-based S-Function | - | - | - | - |
[81] | AD process | ADM1 | ADMS 1.0: Python GUI and MATLAB® ADM1 | - | - | - | - |
[82] | AD process | ADM1 | MATLAB®-code | - | - | - | - |
[90] | AD process | ADM1 | BioOptim [9] | bio waste | - | - | - |
[8] | AD process | modified ADM1 | MATLAB® Simulink | pig manure & glycerin | - | - | - |
[95] | AD process | 2 species, 2 reactions | MATLAB® Simulink | maize silage | - | - | - |
[103] | AD process | 1 reaction | not known | manure | - | - | heat flow, thermodynamics of digester |
[105] | AD process | 13 species, 10 reactions | MATLAB® | fictive waste composition | - | - | heat flow, thermodynamics of digester |
[109] | AD process | ANN: one specific digester | MATLAB® | agricultural waste (landfill) | - | - | - |
[110] | AD process | ANN: 25 digesters | NeuroSolutions® | manure, banana stem, sawdust | - | - | - |
[111] | AD process | ANN of ADM1 | MATLAB®: ADM1 and Python: ANN | fictive (result of ADM1) | - | - | - |
[84] | energy production | ADM1 | MATLAB® Simulink | manure | electricity (micro gas turbine) | - | power electronics of micro gas turbine |
[86] | energy production | ADM1 | MATLAB® Simulink | Multiple | electricity (CHP) | thermodynamics of digester | |
[101] | energy production | 4 species, 4 reactions | MATLAB® Simulink | manure | electricity (micro gas turbine) | - | synchronous electrical generator of micro gas turbine, gas storage, thermodynamics of digester |
[104] | energy production | 1 reaction | MATLAB® Simulink | household garbage | electricity (CHP), heat | domestic use profile (China) | heat storage (water tank), electrical gas compressor, gas storage, battery (buffer) |
[99] | energy production | 1 time-dependent function | MATLAB® Simulink | manure | electricity (CHP) | - | gas storage |
[10] | biogas control | ADM1 | BioOptim: MATLAB® Simulink | - | electricity (CHP) | - | digestate storage, pumps, heating system, energy sinks and sources |
[91] | biogas control | ADM1 | DyBiM: MATLAB® Simulink | grass silage, cattle manure, agricultural substrates | electricity (CHP) | Sweden | gas storage |
[92] | biogas control | ADM1 | MATLAB® | maize silage, rye, triticale, sugar beets, potato pieces, potato peel | - | Germany | PI controller |
[9,106,107] | biogas control | 13 equations, 2 reactions | FORTRAN and WinErs for GUI and automation | - | - | - | tanks, valves, pumps |
[97,98] | biogas control | ADM1 simplification [96] | not known | not known | electricity (CHP) | Germany (EPEX) | gas storage |
[102] | biogas control | linear equation | HOMER® | undifferentiated | electricity (CHP, photovoltaic, fuel cell) | India (off-grid) | heat storage, energy storage (battery) |
[100] | biogas control | 1 species, 1 reaction | MATLAB® and Microsoft Excel® | maize silage, grass silage, manure | electricity (CHP), fuel (CNG) | Germany (EPEX) | biogas to CNG upgrade plant (black box), vehicle fleet |
[113] | biogas control | none | RedSim | fixed gas characteristics | electricity (CHP) | Germany (spot market) | gas storage (mass balance) |
[114,115] | biogas control | none | IPSEpro® | real data gas characteristics | electricity (CHP), fuel (methane) | - | gas storage, heat storage, tanks, gas upgrade (black box) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heiker, M.; Kraume, M.; Mertins, A.; Wawer, T.; Rosenberger, S. Biogas Plants in Renewable Energy Systems—A Systematic Review of Modeling Approaches of Biogas Production. Appl. Sci. 2021, 11, 3361. https://doi.org/10.3390/app11083361
Heiker M, Kraume M, Mertins A, Wawer T, Rosenberger S. Biogas Plants in Renewable Energy Systems—A Systematic Review of Modeling Approaches of Biogas Production. Applied Sciences. 2021; 11(8):3361. https://doi.org/10.3390/app11083361
Chicago/Turabian StyleHeiker, Mathias, Matthias Kraume, Anica Mertins, Tim Wawer, and Sandra Rosenberger. 2021. "Biogas Plants in Renewable Energy Systems—A Systematic Review of Modeling Approaches of Biogas Production" Applied Sciences 11, no. 8: 3361. https://doi.org/10.3390/app11083361
APA StyleHeiker, M., Kraume, M., Mertins, A., Wawer, T., & Rosenberger, S. (2021). Biogas Plants in Renewable Energy Systems—A Systematic Review of Modeling Approaches of Biogas Production. Applied Sciences, 11(8), 3361. https://doi.org/10.3390/app11083361