Kinematic Analysis and Performance Test of a 6-DOF Parallel Platform with Dense Ball Shafting as a Revolute Joint
Abstract
:1. Introduction
2. Structural Design of the Platform
2.1. Composition of the Platform
2.2. Dense Bead Shaft Joint
2.2.1. Design of Joint and Leg
2.2.2. Stiffness Chain Analysis
3. Kinematics Analysis
3.1. Platform Configuration Parameters
3.2. Inverse Kinematics
3.3. Forward Kinematics
3.3.1. Modeling and Solution of Forward Kinematics
3.3.2. Verification of the Forward Kinematics Simulation
4. Research on Platform Performance Testing
4.1. Static Stiffness Testing
4.1.1. Stiffness Testing of the Subchain
4.1.2. Stiffness Testing of the Platform
4.2. Dynamic Stiffness Analysis and Testing of the Platform
4.3. Initial Position Test
4.4. Platform Motion Accuracy Testing
4.4.1. Composition and Principle of the Accuracy Testing System
4.4.2. Repeated Positioning Accuracy Testing
4.5. Summary of Platform Performance Indicators
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sreenivasan, S.V.; Waldron, K.J.; Nanua, P. Closed-form direct displacement analysis of a 6-6 Stewart platform. Mech. Mach. Theory 1994, 29, 855–864. [Google Scholar] [CrossRef]
- Wu, P.; Xiong, H.; Kong, J. Dynamic analysis of 6-SPS parallel mechanism. Int. J. Mech. Mater. Des. 2012, 8, 121–128. [Google Scholar] [CrossRef]
- Liu, G.; Qu, Z.; Liu, X.; Han, J. Singularity analysis and detection of 6-UCU parallel manipulator. Robot. Comput. Integr. Manuf. 2014, 30, 172–179. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, H.; Yang, Y.; Zou, S.; Zhang, X.; Wang, Y. Symmetrical Workspace of 6-UPS Parallel Robot Using Tilt and Torsion Angles. Math. Probl. Eng. 2018, 2018, 6412030. [Google Scholar] [CrossRef]
- Joumah, A.A.; Albitar, C. Design Optimization of 6-RUS Parallel Manipulator Using Hybrid Algorithm. Int. J. Inf. Technol. Comput. Sci. 2018, 10, 83–95. [Google Scholar] [CrossRef] [Green Version]
- Mirshekari, E.; Ghanbarzadeh, A.; Shirazi, K.H. Structure comparison and optimal design of 6-rus parallel manipulator based on kinematic and dynamic performances. Lat. Am. J. Solids Struct. 2016, 13, 2414–2438. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Zhu, R.; Fang, Z.; Chen, C.Y.; Zhang, C. Kinematic Design of a 2R1T Robotic End-Effector with Flexure Joints. IEEE Access 2020, 8, 57204–57213. [Google Scholar] [CrossRef]
- Fang, Y.; Huang, Z. Kinematics of a three-degree-of-freedom in-parallel actuated manipulator mechanism. Mech. Mach. Theory 1997, 32, 789–796. [Google Scholar] [CrossRef]
- Chai, X.; Wang, M.; Xu, L.; Ye, W. Dynamic modeling and analysis of a 2PRU-UPR parallel robot based on screw theory. IEEE Access 2020, 8, 78868–78878. [Google Scholar] [CrossRef]
- Huang, Z.; Fang, Y.F. Kinematic characteristics analysis of 3 DOF in-parallel actuated pyramid mechanisms. Mech. Mach. Theory 1996, 31, 1009–1018. [Google Scholar] [CrossRef]
- Han, C.; Kim, J.; Kim, J.; Park, F.C. Kinematic sensitivity analysis of the 3-UPU parallel mechanism. Mech. Mach. Theory 2002, 37, 787–798. [Google Scholar] [CrossRef]
- Richard, P.L.; Gosselin, C.M.; Kong, X. Kinematic analysis and prototyping of a partially decoupled 4-DOF 3T1R parallel manipulator. J. Mech. Des. Trans. ASME 2007, 129, 611–616. [Google Scholar] [CrossRef]
- Zhang, C.; Li, B.; Zhao, X.; Li, Y. Kinematics analysis of a four degree-of-freedom parallel manipulator. In Proceedings of the 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), Macau, Macao, 5–8 December 2017; Institute of Electrical and Electronics Engineers (IEEE): New York, NY, USA, 2018; pp. 1731–1736. [Google Scholar] [CrossRef]
- Li, Q.; Huang, Z.; Hervé, J.M. Type synthesis of 3R2T 5-DOF parallel mechanisms using the lie group of displacements. IEEE Trans. Robot. Autom. 2004, 20, 173–180. [Google Scholar] [CrossRef]
- Lu, Y. Simulation of machining 3D free-form surface in normal direction using 6-SSP and 4SPS + UPU parallel machine tools. Int. J. Adv. Manuf. Technol. 2007, 33, 1180–1188. [Google Scholar] [CrossRef]
- Gough, V.E. Contribution to discussion of papers on research in automobile stability, control and tyre performance. Proc. Automot. Div. Inst. Mech. Eng. 1956, 171, 392–395. [Google Scholar]
- Stewart, D. A platform with six degrees of freedom. Proc. Inst. Mech. Eng. 1965, 180, 371–386. [Google Scholar] [CrossRef]
- Shiga, Y.; Tanaka, Y.; Goto, H.; Takeda, H. Design of a six degree-of-freedom tripod parallel mechanism for flight simulators. Int. J. Autom. Technol. 2011, 5, 715–721. [Google Scholar] [CrossRef]
- Zhang, D.; Lang, S.Y.T. Stiffness modeling for a class of reconfigurable PKMs with three to five degrees of freedom. J. Manuf. Syst. 2004, 23, 316–327. [Google Scholar] [CrossRef]
- Huang, T.; Li, Z.; Li, M.; Chetwynd, D.G.; Gosselin, C.M. Conceptual design and dimensional synthesis of a novel 2-DOF translational parallel robot for pick-and-place operations. J. Mech. Des. Trans. ASME 2004, 126, 449–455. [Google Scholar] [CrossRef]
- Yang, J.; Xu, Z.; Wu, Q.; Zhu, M.; He, S.; Qin, C. Dynamic modeling and control of a 6-DOF micro-vibration simulator. Mech. Mach. Theory. 2016, 104, 350–369. [Google Scholar] [CrossRef]
- Yang, J.; Xu, Z.; Wu, Q.; Li, Y.; Chen, L.; Gu, Y. Design of six dimensional vibration isolation system for space optical payload. Opt. Precis. Eng. 2015, 23, 1347–1357. [Google Scholar] [CrossRef]
- Geijo, E.M.; Casalta, J.M.; Canchado, M.; Andrés, M.S.; Brú, R.; Garcia, H.; Tomás, A.; Zago, L.; Jeffers, P. VISTA secondary mirror drive performance and test results. In Optomechanical Technologies for Astronomy; International Society for Optics and Photonics: Bellingham, WA, USA, 2006; Volume 6273, p. 627338. [Google Scholar] [CrossRef]
- Schipani, P.; D’Orsi, S.; Fierro, D.; Marty, L.; Perrotta, F.; Arcidiacono, C. Performance of the VST secondary mirror support system. In Modern Technologies in Space-and Ground-based Telescopes and Instrumentation; International Society for Optics and Photonics: Bellingham, WA, USA, 2010; Volume 7739, p. 773932. [Google Scholar] [CrossRef]
- Shoham, M.; Burman, M.; Zehavi, E.; Joskowicz, L.; Batkilin, E.; Kunicher, Y. Bone-Mounted Miniature Robot for Surgical Procedures: Concept and Clinical Applications. IEEE Trans. Robot. Autom. 2003, 19, 893–901. [Google Scholar] [CrossRef]
- Nakano, T.; Sugita, N.; Ueta, T.; Tamaki, Y.; Mitsuishi, M. A parallel robot to assist vitreoretinal surgery. Int. J. Comput. Assist. Radiol. Surg. 2009, 4, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Petrescu, R.V.V.; Aversa, R.; Apicella, A.; Kozaitis, S.; Abu-Lebdeh, T.; Petrescu, F.I.T. Inverse Kinematics of a Stewart Platform. J. Mechatron. Robot. 2018, 2, 45–59. [Google Scholar] [CrossRef]
- Liu, G.; Zheng, S.; Ogbobe, P.; Han, J. Inverse kinematic and dynamic analyses of the 6-UCU parallel manipulator. Appl. Mech. Mater. 2012, 127, 172–180. [Google Scholar] [CrossRef]
- Khalil, W.; Guegan, S. Inverse and Direct Dynamic Modeling of Gough-Stewart Robots. IEEE Trans. Robot. 2004, 20, 754–761. [Google Scholar] [CrossRef] [Green Version]
- Ji, P.; Wu, H. Kinematics analysis of an offset 3-UPU translational parallel robotic manipulator. Robot. Auton. Syst. 2003, 42, 117–123. [Google Scholar] [CrossRef]
- Hu, B.; Lu, Y. Analyses of kinematics, statics, and workspace of a 3-RRPRR parallel manipulator and its three isomeric mechanisms. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2008, 222, 1829–1837. [Google Scholar] [CrossRef]
- Dalvand, M.M.; Shirinzadeh, B. Forward kinematics analysis of offset 6-RRCRR parallel manipulators. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2011, 225, 3011–3018. [Google Scholar] [CrossRef]
- Dalvand, M.; Shirinzadeh, B. Kinematics Analysis of 6-DOF Parallel Micro-Manipulators with Offset U-Joints: A Case Study. Int. J. Intell. Mechatron. Robot. 2012, 2, 28–40. [Google Scholar] [CrossRef] [Green Version]
- Dalvand, M.; Shirinzadeh, B.; Nahavandi, S. Inverse kinematics analysis of 6-RRCRR parallel manipulators. In Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Wollongong, Australia, 9–12 July 2013; pp. 644–648. [Google Scholar] [CrossRef]
- Großmann, K.; Kauschinger, B. Eccentric universal joints for parallel kinematic machine tools: Variants and kinematic transformations. Prod. Eng. 2012, 6, 521–529. [Google Scholar] [CrossRef]
- Gloess, R.; Lula, B. Challenges of extreme load hexapod design and modularization for large ground-based telescopes. In Modern Technologies in Space-and Ground-Based Telescopes and Instrumentation; International Society for Optics and Photonics: Bellingham, WA, USA, 2010; Volume 7739, p. 77391U. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
0.13 m | |
0.222 m | |
30° | |
90° | |
0.01 m | |
0.01 m | |
0.1 m | |
0.066 m | |
0.128 m |
1 | 0 | |||
2 | 0 | |||
3 | 0 | |||
4 | 0 | 0 | ||
5 | 0 | |||
6 | 0 | 0 | 0 |
Project Name | Performance | |
---|---|---|
Repeated positioning accuracy | pitch motion (Rotating around X-axis) | 0.440″ (step size of 0.5°) 0.181″ (step size of 0.001°) |
yaw motion (Rotating around Y-axis) | 1.734″ (step size of 0.5°) 0.108″ (step size of 0.001°) | |
focusing motion (Translating around Z-axis) | 0.225 μm (step size of 0.5 mm) 0.168 μm (step size of 1 μm) | |
X-directional static stiffness of the whole platform | 7.84 N/μm | |
Z-directional static stiffness of the whole platform | 21.71 N/μm | |
Natural Frequency (with 30 kg load) | 86.25 Hz |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, H.; Zhang, Y.; Zhang, H.; Han, C.; Li, A.; Xu, Z. Kinematic Analysis and Performance Test of a 6-DOF Parallel Platform with Dense Ball Shafting as a Revolute Joint. Appl. Sci. 2021, 11, 6268. https://doi.org/10.3390/app11146268
Han H, Zhang Y, Zhang H, Han C, Li A, Xu Z. Kinematic Analysis and Performance Test of a 6-DOF Parallel Platform with Dense Ball Shafting as a Revolute Joint. Applied Sciences. 2021; 11(14):6268. https://doi.org/10.3390/app11146268
Chicago/Turabian StyleHan, Hasiaoqier, Yang Zhang, Hui Zhang, Chunyang Han, Ang Li, and Zhenbang Xu. 2021. "Kinematic Analysis and Performance Test of a 6-DOF Parallel Platform with Dense Ball Shafting as a Revolute Joint" Applied Sciences 11, no. 14: 6268. https://doi.org/10.3390/app11146268
APA StyleHan, H., Zhang, Y., Zhang, H., Han, C., Li, A., & Xu, Z. (2021). Kinematic Analysis and Performance Test of a 6-DOF Parallel Platform with Dense Ball Shafting as a Revolute Joint. Applied Sciences, 11(14), 6268. https://doi.org/10.3390/app11146268