Estimating Contact Force Chains Using Artificial Neural Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. DEM Model
2.2. DEM Data
2.3. Artificial Neural Network
3. Results
3.1. Predicting Contact Force Chains
3.2. Parametric Study
3.2.1. The Effect of Features
3.2.2. The Effect of Data Size
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karatza, Z.; Andò, E.; Papanicolopulos, S.-A.; Viggiani, G.; Ooi, J.Y. Effect of particle morphology and contacts on particle breakage in a granular assembly studied using X-ray tomography. Granul. Matter 2019, 21, 44. [Google Scholar] [CrossRef] [Green Version]
- Jerves, A.X.; Kawamoto, R.Y.; Andrade, J.E. Effects of grain morphology on critical state: A computational analysis. Acta Geotech. 2015, 11, 493–503. [Google Scholar] [CrossRef]
- Bolton, M.D. The strength and dilatancy of sands. Géotechnique 1986, 36, 65–78. [Google Scholar] [CrossRef] [Green Version]
- Christoffersen, J.; Mehrabadi, M.M.; Nemat-Nasser, S. A Micromechanical Description of Granular Material Behavior. J. Appl. Mech. 1981, 48, 339–344. [Google Scholar] [CrossRef]
- McDowell, G.R.; Bolton, M.D. On the micromechanics of crushable aggregates. Géotechnique 1998, 48, 667–679. [Google Scholar] [CrossRef] [Green Version]
- Andò, E.; Hall, S.A.; Viggiani, G.; Desrues, J.; Bésuelle, P. Grain-scale experimental investigation of localised deformation in sand: A discrete particle tracking approach. Acta Geotech. 2011, 7, 1–13. [Google Scholar] [CrossRef]
- Andò, E.; Viggiani, G.; Hall, S.A.; Desrues, J. Experimental micro-mechanics of granular media studied by x-ray tomography: Recent results and challenges. Géotechnique Lett. 2013, 3, 142–146. [Google Scholar] [CrossRef]
- Druckrey, A.M.; Alshibli, K.A.; Al-Raoush, R.I. 3D characterization of sand particle-to-particle contact and morphology. Comput. Geotech. 2016, 74, 26–35. [Google Scholar] [CrossRef] [Green Version]
- Hall, S.; Bornert, M.; Desrues, J.; Pannier, Y.; Lenoir, N.; Viggiani, G.; Bésuelle, P. Discrete and continuum analysis of localised deformation in sand using X-ray μCT and volumetric digital image correlation. Géotechnique 2010, 60, 315–322. [Google Scholar] [CrossRef]
- Wiebicke, M.; Andò, E.; Herle, I.; Viggiani, G. On the metrology of interparticle contacts in sand from x-ray tomography images. Meas. Sci. Technol. 2017, 28, 124007. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, J.; Coop, M.R.; Viggiani, G.; Jiang, M. An investigation of single sand particle fracture using X-ray micro-tomography. Géotechnique 2015, 65, 625–641. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.; Wang, J.; Zhao, B. Micromorphology characterization and reconstruction of sand particles using micro X-ray tomography and spherical harmonics. Eng. Geol. 2015, 184, 126–137. [Google Scholar] [CrossRef]
- Wu, M.; Wang, J. Registration of point cloud data for matching crushed sand particles. Powder Technol. 2019, 347, 227–242. [Google Scholar] [CrossRef]
- Viggiani GTengattini, A. Recent developments in laboratory testing of geomaterials with emphasis on imaging. In Proceedings of the XVII ECSMGE-2019, Reykjavík, Iceland, 1–6 September 2019. [Google Scholar] [CrossRef]
- Fonseca, J.; O’sullivan, C.; Coop, M.; Lee, P. Quantifying the evolution of soil fabric during shearing using scalar parameters. Géotechnique 2013, 63, 818–829. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Z. Investigation of the Grain-Scale Mechanical Behavior of Granular Soils under Shear Using x-ray Micro-Tomography. Ph.D. Thesis, City University of Hong Kong, Hong Kong, China, 2018. [Google Scholar]
- Drescher, A.; de Josselin de Jong, G. Photoelastic verification of a mechanical model for the flow of a granular material. J. Mech. Phys. Solids 1972, 20, 337–340. [Google Scholar] [CrossRef]
- Howell, D.; Behringer, R.P.; Veje, C. Stress Fluctuations in a 2D Granular Couette Experiment: A Continuous Transition. Phys. Rev. Lett. 1999, 82, 5241–5244. [Google Scholar] [CrossRef] [Green Version]
- Saadatfar, M.; Sheppard, A.P.; Senden, T.J.; Kabla, A.J. Mapping forces in a 3D elastic assembly of grains. J. Mech. Phys. Solids 2012, 60, 55–66. [Google Scholar] [CrossRef] [Green Version]
- Hurley, R.; Marteau, E.; Ravichandran, G.; Andrade, J.E. Extracting inter-particle forces in opaque granular materials: Beyond photoelasticity. J. Mech. Phys. Solids 2014, 63, 154–166. [Google Scholar] [CrossRef]
- Andrade, J.E.; Lim, K.W.; Avila, C.F.; Vlahinić, I. Granular element method for computational particle mechanics. Comput. Methods Appl. Mech. Eng. 2012, 241–244, 262–274. [Google Scholar] [CrossRef]
- Wang, J.; Dove, J.E.; Gutierrez, M.S. Discrete-continuum analysis of shear banding in the direct shear test. Géotechnique 2007, 57, 513–526. [Google Scholar] [CrossRef]
- Thornton, C. Numerical simulations of deviatoric shear deformation of granular media. Géotechnique 2000, 50, 43–53. [Google Scholar] [CrossRef]
- Khoubani, A.; Evans, T.M. An efficient flexible membrane boundary condition for DEM simulation of axisymmetric element tests. Int. J. Numer. Anal. Methods Geomech. 2017, 42, 694–715. [Google Scholar] [CrossRef]
- Wang, J.; Yan, H. On the role of particle breakage in the shear failure behavior of granular soils by DEM. Int. J. Numer. Anal. Methods Geomech. 2011, 37, 832–854. [Google Scholar] [CrossRef]
- Wang, J.; Yan, H. DEM analysis of energy dissipation in crushable soils. Soils Found. 2012, 52, 644–657. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Wang, J.; Russell, A.; Cheng, Z. DEM modelling of mini-triaxial test based on one-to-one mapping of sand particles. Géotechnique 2020, 1–14. [Google Scholar] [CrossRef]
- Wu, M.; Wang, J.; Zhao, B. DEM modeling of the one-dimensional compression of sands incorporating a statistical particle fragmentation scheme. Can. Geotech. J. Publ. 2021. [Google Scholar] [CrossRef]
- Zhang, W.; Goh, A.T. Multivariate adaptive regression splines and neural network models for prediction of pile drivability. Geosci. Front. 2016, 7, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Shi, C.; Wang, Y. Non-parametric machine learning methods for interpolation of spatially varying non-stationary and non-Gaussian geotechnical properties. Geosci. Front. 2021, 12, 339–350. [Google Scholar] [CrossRef]
- Abdel-mawgoud, H.; Kamel, S.; Tostado, M.; Yu, J.; Jurado, F. Optimal Installation of Multiple DG using Chaotic Moth-flame Algorithm and Real Power Loss Sensitivity Factor in Distribution System. In Proceedings of the International Conference on Smart Energy Systems and Technologies (SEST), Seville, Spain, 10–12 September 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Cubuk, E.; Schoenholz, S.; Rieser, J.; Malone, B.; Rottler, J.; Durian, D.; Kaxiras, E.; Liu, A. Identifying Structural Flow Defects in Disordered Solids Using Machine-Learning Methods. Phys. Rev. Lett. 2015, 114. [Google Scholar] [CrossRef] [Green Version]
- Rouet-Leduc, B.; Hulbert, C.; Bolton, D.C.; Ren, C.X.; Riviere, J.; Marone, C.; Guyer, R.A.; Johnson, P.A. Estimating Fault Friction From Seismic Signals in the Laboratory. Geophys. Res. Lett. 2018, 45, 1321–1329. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Yin, Z.Y. A novel deep learning-based modelling strategy from image of particles to mechanical properties for granular materials with CNN and BiLSTM. Comput. Methods Appl. Mech. Eng. 2021, 382, 113858. [Google Scholar] [CrossRef]
- Grosse, R.; Johnson, M.K.; Adelson, E.H.; Freeman, W.T. Ground truth dataset and baseline evaluations for intrinsic image algorithms. In Proceedings of the IEEE International Conference on Computer Vision, Kyoto, Japan, 29 September–2 October 2009; No. Iccv; IEEE: Piscataway, NJ, USA, 2009; pp. 2335–2342. [Google Scholar] [CrossRef]
- Itasca, PFC3D Manual; Itasca Consulting Group Inc.: Minneapolis, MI, USA, 2008.
- Henkel, D.J.; Gilbert, G.D. The Effect Measured of the Rubber Membrane on the Triaxial Compression Strength of Clay Samples. Géotechnique 1952, 3, 20–29. [Google Scholar] [CrossRef]
- Fazekas, S.; Török, J.; Kertész, J.; Wolf, D.E. Morphologies of three-dimensional shear bands in granular media. Phys. Rev. E 2006, 74, 031303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Bono, J.; Mcdowell, G.; Wanatowski, D. Discrete element modelling of a flexible membrane for triaxial testing of granular material at high pressures. Géotechnique Lett. 2012, 2, 199–203. [Google Scholar] [CrossRef] [Green Version]
- Ciaburro, G.; Venkateswaran, B. Neural Networks with R: Smart Models Using CNN, RNN, Deep Learning, and Artificial Intelligence Principles; Packt Publishing Ltd.: Birmingham, UK, 2017. [Google Scholar]
- Mathworks. MATLAB, Version 7.0.; Mathworks, Inc.: Natick, MA, USA, 2010. [Google Scholar]
- Moré, J.J. The Levenberg-Marquardt algorithm: Implementation and theory. In Proceedings of the Conference on Numerical Analysis, Dundee, UK, 28 June 1977; pp. 105–116. [Google Scholar] [CrossRef] [Green Version]
- Sperry, J.M.; Peirce, J.J. A Model for Estimating the Hydraulic Conductivity of Granular Material Based on Grain Shape, Grain Size, and Porosity. Ground Water 1995, 33, 892–898. [Google Scholar] [CrossRef]
- Yang, J.; Gu, X. Shear stiffness of granular material at small strains: Does it depend on grain size. Géotechnique 2013, 63, 165–179. [Google Scholar] [CrossRef] [Green Version]
- Arakawa, M.; Nishino, M. Contact Number and Porosity in Randomly Packed Sphere Mixtures of Various Sizes. J. Soc. Mater. Sci. 1973, 22, 658–662. [Google Scholar] [CrossRef]
- Oda, M. Co-Ordination Number and its Relation to Shear Strength of Granular Material. Soils Found. 1977, 17, 29–42. [Google Scholar] [CrossRef] [Green Version]
- Pinson, D.; Zou, R.P.; Yu, A.B.; Zulli, P.; McCarthy, M.J. Coordination number of binary mixtures of spheres. J. Phys. D Appl. Phys. 1998, 31, 457–462. [Google Scholar] [CrossRef]
- Bathurst, R.J.; Rothenburg, L. Observations on stress-force-fabric relationships in idealized granular materials. Mech. Mater. 1990, 9, 65–80. [Google Scholar] [CrossRef]
- Rothenburg, L.; Bathurst, R.J. Discussion: Analytical study of induced anisotropy in idealized granular material. Géotechnique 1990, 40, 665–667. [Google Scholar] [CrossRef]
- Buzau, M.M.; Tejedor-Aguilera, J.; Cruz-Romero, P.; Gomez-Exposito, A. Hybrid Deep Neural Networks for Detection of Non-Technical Losses in Electricity Smart Meters. IEEE Trans. Power Syst. 2020, 35, 1254–1263. [Google Scholar] [CrossRef]
Sample Parameters | |
Size: height × width, mm | 300 × 150 |
No. of spheres | 6300 |
Friction coefficient | 0.3 |
Contact model | Linear rolling resistance model |
Elastic modulus, Pa | 3.5 × 107 |
Rolling resistance coefficient | 0.35 |
Density, kg/m3 | 2650 |
Wall friction coefficient | 0 |
Damping coefficient | 0.7 |
Membrane Parameters | |
Number of balls | 400 |
Friction coefficient | 0 |
Normal stiffness, N/m | 1 × 106 |
Shear stiffness, N/m | 1 × 106 |
Tensile strength, N | 1 × 10200 |
Shear strength, N | 1 × 10200 |
Density, kg/m3 | 1000 |
Ball size, mm | 2 |
Test ID | Feature | Bins | Training Data Size | Rb | Rw | Rm | Rs |
---|---|---|---|---|---|---|---|
ML00 | All features | 180 | 40,000 | 0.967 | 0.556 | 0.827 | 0.090 |
ML01 | Coordination number | 0.962 | 0.345 | 0.749 | 0.128 | ||
ML02 | x-velocity | 0.892 | 0.119 | 0.556 | 0.157 | ||
ML03 | y-velocity | / | / | 0.932 | 0.064 | 0.626 | 0.170 |
ML04 | Spin | 0.733 | 0.099 | 0.316 | 0.172 | ||
ML05 | Particle size | 0.963 | 0.347 | 0.768 | 0.121 | ||
ML06 | Particle size and coordination number | 0.959 | 0.392 | 0.773 | 0.115 | ||
ML07 | 40,000 | 0.967 | 0.556 | 0.827 | 0.090 | ||
ML08 | 20,000 | 0.953 | 0.491 | 0.790 | 0.101 | ||
ML09 | / | / | 10,000 | 0.955 | 0.487 | 0.786 | 0.102 |
ML10 | 5000 | 0.953 | 0.488 | 0.789 | 0.106 | ||
ML11 | 2500 | 0.950 | 0.433 | 0.775 | 0.107 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, M.; Wang, J. Estimating Contact Force Chains Using Artificial Neural Network. Appl. Sci. 2021, 11, 6278. https://doi.org/10.3390/app11146278
Wu M, Wang J. Estimating Contact Force Chains Using Artificial Neural Network. Applied Sciences. 2021; 11(14):6278. https://doi.org/10.3390/app11146278
Chicago/Turabian StyleWu, Mengmeng, and Jianfeng Wang. 2021. "Estimating Contact Force Chains Using Artificial Neural Network" Applied Sciences 11, no. 14: 6278. https://doi.org/10.3390/app11146278
APA StyleWu, M., & Wang, J. (2021). Estimating Contact Force Chains Using Artificial Neural Network. Applied Sciences, 11(14), 6278. https://doi.org/10.3390/app11146278