Mechanical Properties of Historic Masonry Stones Obtained by In Situ Non-Destructive Tests on the St. Agostino Church in Amatrice (Italy)
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
- -
- Compression tests on cores obtained by extraction from masonry stones taken in situ after the collapse of the St. Agostino church (Figure 3a);
- -
- Ultrasonic tests for the determination of the elastic dynamic modulus performed on the same stones (Figure 4);
- -
- Impact tests carried out on the same stones (Figure 5).
2.1. Compression Test
2.2. Ultrasonic Test
2.3. Impact Test
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Binda, L.; Gambarotta, L.; Lagomarsino, S.; Modena, C. A multilevel approach to the damage assessment and the seismic improvement of masonry buildings in Italy. In Seismic Damage to Masonry Buildings; Bernardini, A., Ed.; Balkema: Rotterdam, The Netherlands, 1999; pp. 179–194. [Google Scholar]
- Castori, G.; Borri, A.; De Maria, A.; Corradi, M.; Sisti, R. Seismic vulnerability assessment of a monumental masonry building. Eng. Struct. 2017, 136, 454–465. [Google Scholar] [CrossRef]
- Rovero, L.; Alecci, V.; Mechelli, J.; Tonietti, U.; De Stefano, M. Masonry walls with irregular texture of L’Aquila (Italy) seismic area: Validation of a method for the evaluation of masonry quality. Mater. Struct. 2016, 49, 2297–2314. [Google Scholar] [CrossRef]
- Sorrentino, L.; da Porto, F.; Magenes, G.; Penna, A. Seismic behaviour of ordinary masonry buildings during the 2016 central Italy earthquakes. Bull. Earthq. Eng. 2019, 17, 5583–5607. [Google Scholar] [CrossRef] [Green Version]
- Borri, A.; Corradi, M. Architectural Heritage: A Discussion on Conservation and Safety. Heritage 2019, 2, 41. [Google Scholar] [CrossRef] [Green Version]
- Sisti, R.; Di Ludovico, M.; Borri, A.; Prota, A. Damage assessment and the effectiveness of prevention: The response in buildings in Norcia. Bull. Earthq. Eng. 2019, 17, 5393–5397. [Google Scholar] [CrossRef]
- Spyrakos, C.C.; Maniatakis, C. Seismic protection of monuments and historic structures—The seismo research project. In Proceedings of the VII European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS Congress 2016), Crete Island, Greece, 5–10 June 2016. [Google Scholar]
- Lagomarsino, S.; Podestà, S. Seismic vulnerability of ancient churches: Damage assessment and emergency planning. Earthq. Spectra 2004, 20, 377–394. [Google Scholar] [CrossRef]
- Grazzini, A.; Chiabrando, F.; Foti, S.; Sammartano, G.; Spanò, A. A Multidisciplinary Study on the Seismic Vulnerability of St. Agostino Church in Amatrice following the 2016 Seismic Sequence. Int. J. Herit. Archit. 2020, 14, 885–902. [Google Scholar] [CrossRef]
- Parisi, F.; Lignola, G.P.; Augenti, N.; Prota, A.; Manfredi, G. Rocking response assessment of in-plane laterally-loaded masonry walls with openings. Eng. Struct. 2013, 56, 1234–1248. [Google Scholar] [CrossRef]
- Tomic, I.; Vanin, F.; Božulic, I.; Beyer, K. Numerical Simulation of Unreinforced Masonry Buildings with Timber Diaphragms. Buildings 2021, 11, 205. [Google Scholar] [CrossRef]
- Gonen, S.; Pulatsu, B.; Erdogmus, E.; Karaesmen, E.; Karaesmen, E. Quasi-Static Nonlinear Seismic Assessment of a Fourth Century, A.D. Roman Aqueduct in Istanbul, Turkey. Heritage 2021, 4, 25. [Google Scholar] [CrossRef]
- Pulatsu, B.; Erdogmus, E.; Lourenço, P.B.; Lemos, J.V.; Tunkay, K. Simulation of the in-plane structural behavior of unreinforced masonry walls and buildings using DEM. Structures 2020, 27, 2274–2287. [Google Scholar] [CrossRef]
- Grillanda, N.; Valente, M.; Milani, G.; Chiozzi, A.; Tralli, A. Advanced numerical strategies for seismic assessment of historical masonry aggregates. Eng. Struct. 2020, 212, 110441. [Google Scholar] [CrossRef]
- Binda, L.; Cantini, L.; Tedeschi, C. Diagnosis of Historic Masonry Structures Using Non-Destructive Techniques. In Nondestructive Testing of Materials and Structures; Buyukozturk, O., Tasdemir, M.A., Gunes, O., Akkaya, Y., Eds.; Springer: Heidelberg, Germany, 2013; pp. 1089–1102. [Google Scholar]
- Verstrynge, E.; Lacidogna, G.; Accornero, F.; Tomor, A. A review on acoustic emission monitoring for damage detection in masonry structures. Constr. Build. Mater. 2020, 268. [Google Scholar] [CrossRef]
- Invernizzi, S.; Lacidogna, G.; Lozano-Ramirez, N.; Carpinteri, A. Structural monitoring and assessment of an ancient masonry tower. Eng. Fract. Mech. 2018, 210, 429–443. [Google Scholar] [CrossRef]
- Valluzzi, M.R.; Lorenzoni, F.; Deiana, R.; Taffarel, S.; Modena, C. Non-destructive investigations for structural qualification of the Sarno Baths, Pompeii. J. Cult. Herit. 2019, 40, 280–287. [Google Scholar] [CrossRef]
- Grazzini, A. Sonic and Impact Test for Structural Assessment of Historical Masonry. Appl. Sci. 2019, 9, 5148. [Google Scholar] [CrossRef] [Green Version]
- Vasconcelos, G.; Lourenço, P.B.; Alves, C.S.A.; Pamplona, G. Prediction of the mechanical properties of granites by ultrasonic pulse velocity and schmidt hammer hardness. In Proceedings of the 10th North American Masonry Conference, St. Louis, MO, USA, 3–6 June 2007; Myers, B., Ed.; Masonry Society: Longmont, CO, USA, 2007. [Google Scholar]
- Vasanelli, E.; Sileo, M.; Calia, A.; Aiello, M.A. Non-destructive techniques to assess mechanical and physical properties of soft calcarenitic stones. Procedia Chem. 2013, 8, 35–44. [Google Scholar] [CrossRef] [Green Version]
- Cobanoglu, I.; Celik, S.B. Estimation of uniaxial compressive strength from point load strength, Schmidt hardness and P-wave velocity. Bull. Eng. Geol. Environ. 2008, 67, 491–498. [Google Scholar] [CrossRef]
- Concu, G.; De Nicolo, B.; Valdes, M. Prediction of Building Limestone Physical and Mechanical Properties by Means of Ultrasonic P-Wave Velocity. Sci. World J. 2014, 14, 1–8. [Google Scholar] [CrossRef]
- NTC 2018–D.M. 17/01/2018 Norme Tecniche per le Costruzioni; Ministero delle Infrastrutture e dei Trasporti: Rome, Italy, 2018. (In Italian) [Google Scholar]
- Monaco, M.; Aurilio, M.; Tafuro, A.; Guadagnuolo, M. Sustainable Mortars for Application in the Cultural Heritage Field. Materials 2021, 14, 598. [Google Scholar] [CrossRef]
- UNI EN 1926: 2007. In Metodi di Prova per Pietre Naturali—Determinazione Della Resistenza a Compressione Uniassiale; UNI: Milan, Italy, 2007. (In Italian)
- ASTM D2845 1995. In Standard Test Method for Laboratory Determination of Pulse Velocities and Ultrasonic Elastic Constants of Rock; ASTM: West Conshohocken, PA, USA, 1995.
- UNI EN 12504-4: 2005. In Prove sul Calcestruzzo nelle Strutture—Parte 4: Determinazione Della Velocità di Propagazione Degli Impulsi Ultrasonici; UNI: Milan, Italy, 2005. (In Italian)
- Chen, Y.; Wang, S.; Wang, E. Strength and elastic properties of sandstone under different testing conditions. J. Cent. South Univ. 2007, 14, 210–215. [Google Scholar] [CrossRef]
- Xu, H.; Zhou, W.; Xie, R.; Da, L.; Xiao, C.; Shan, Y.; Zhang, H. Characterization of Rock Mechanical Properties Using Lab Tests and Numerical Interpretation Model of Well Logs. Math. Probl. Eng. 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
- Grazzini, A. In Situ Analysis of Plaster Detachment by Impact Tests. Appl. Sci. 2019, 9, 258. [Google Scholar] [CrossRef] [Green Version]
- Bocca, P.; Scavia, C. The impulse method for the evaluation of concrete elastic characteristics. In Proceedings of the 9th International Conference on Experimental Mechanics, Copenhagen, Denmark, 20–24 August 1990. [Google Scholar]
- Grazzini, A.; Fasana, S.; Zerbinatti, M.; Lacidogna, G. Non-Destructive Tests for Damage Evaluation of Stone Columns: The Case Study of Sacro Monte in Ghiffa (Italy). Appl. Sci. 2020, 10, 2673. [Google Scholar] [CrossRef]
- Johnson, K.L. Contact Mechanics; Cambridge University Press: Cambridge, UK, 1985. [Google Scholar]
- Deresiewicz, H. A note on Hertz Impact. Acta Mech. 1968, 6, 110–112. [Google Scholar] [CrossRef]
- Aliabdo, A.A.E.; Elmoaty, A.E.M.A. Reliability of using nondestructive tests to estimate compressive strength of building stones and bricks. Alex. Eng. J. 2012, 51, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Presa, L.; Costafreda, J.L.; Martín, D.A. Correlation between Uniaxial Compression Test and Ultrasonic Pulse Rate in Cement with Different Pozzolani Additions. Appl. Sci. 2021, 11, 3747. [Google Scholar] [CrossRef]
- Dhawan, K.R.; Muralidhar, B. Relationship between static and two types of dynamic moduli for different rocks. Indian Geotech. J. 2015, 45, 341–348. [Google Scholar] [CrossRef]
- Jurowski, K.; Grzeszczyk, S. Influence of Selected Factors on the Relationship between the Dynamic Elastic Modulus and Compressive Strength of Concrete. Materials 2018, 11, 477. [Google Scholar] [CrossRef] [Green Version]
- Bocca, P.; Grazzini, A.; Masera, D. Fatigue behaviour analysis for the durability prequalification of strengthening mortars. J. Phys. Conf. Ser. 2011, 305, 012041. [Google Scholar] [CrossRef]
- Grazzini, A.; Lacidogna, G.; Valente, S.; Accornero, F. Delamination of plasters applied to historical masonry walls: Analysis by acoustic emission technique and numerical model. IOP Conf. Ser. Mater. Sci. Eng. 2018, 372, 012022. [Google Scholar] [CrossRef]
- Grazzini, A.; Lacidogna, G.; Valente, S.; Accornero, F. Acoustic emission and numerical analysis of the delamination process in repair plasters applied to historical walls. Constr. Build. Mater. 2020, 236, 117798. [Google Scholar] [CrossRef]
Compression Test | Impact Test | Ultrasonic Test | |||||
---|---|---|---|---|---|---|---|
Specimen | fc (MPa) | Es (Mpa) | Es (Mpa) | Ed (MPa) | v (m/s) | ||
C_01_A | 65.2 | 75.45 | 23,866 | 25,624 | 27,605 | 28,850 | 3542 |
C_01_B | 85.7 | 27,382 | |||||
C_02_A | 146.5 | 147.90 | 35,083 | 36,435 | 41,722 | 45,140 | 4367 |
C_02_B | 149.3 | 37,787 | |||||
C_03_A | 106.7 | 87.05 | 32,096 | 27,760 | 27,498 | 25,831 | 3343 |
C_03_B | 67.4 | 23,425 | |||||
C_04_A | 150.2 | 167.60 | 35,670 | 35,616 | 33,124 | 44,859 | 4370 |
C_04_B | 185.0 | 35,562 | |||||
C_05_A | 85.9 | 80.90 | 28,538 | 24,412 | 13,163 | 15,527 | 2593 |
C_05_B | 75.9 | 20,286 | |||||
C_06_A | 209.4 | 180.85 | 57,168 | 50,175 | 42,869 | 36,627 | 3943 |
C_06_B | 152.3 | 43,183 | |||||
C_07_A | 119.3 | 117.45 | 40,919 | 34,863 | 19,425 | 32,719 | 3730 |
C_07_B | 115.6 | 28,807 | |||||
C_08_A | 113.8 | 112.90 | 34,521 | 34,843 | 23,171 | 37,084 | 4010 |
C_08_B | 112.0 | 35,164 | |||||
C_09_A | 139.3 | 141.55 | 35,788 | 36,963 | 52,540 | 43,872 | 4347 |
C_09_B | 143.8 | 38,139 | |||||
C_10_A | 137.7 | 140.65 | 40,605 | 42,249 | 40,088 | 43,318 | 4297 |
C_10_B | 143.6 | 43,894 | |||||
Average | 125.2 | 34,894 | 32,121 | 35,383 | 3584 | ||
St. dev. | 37.0 | 7359 | 11,539 | 9272 | 544 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grazzini, A.; Lacidogna, G. Mechanical Properties of Historic Masonry Stones Obtained by In Situ Non-Destructive Tests on the St. Agostino Church in Amatrice (Italy). Appl. Sci. 2021, 11, 6352. https://doi.org/10.3390/app11146352
Grazzini A, Lacidogna G. Mechanical Properties of Historic Masonry Stones Obtained by In Situ Non-Destructive Tests on the St. Agostino Church in Amatrice (Italy). Applied Sciences. 2021; 11(14):6352. https://doi.org/10.3390/app11146352
Chicago/Turabian StyleGrazzini, Alessandro, and Giuseppe Lacidogna. 2021. "Mechanical Properties of Historic Masonry Stones Obtained by In Situ Non-Destructive Tests on the St. Agostino Church in Amatrice (Italy)" Applied Sciences 11, no. 14: 6352. https://doi.org/10.3390/app11146352
APA StyleGrazzini, A., & Lacidogna, G. (2021). Mechanical Properties of Historic Masonry Stones Obtained by In Situ Non-Destructive Tests on the St. Agostino Church in Amatrice (Italy). Applied Sciences, 11(14), 6352. https://doi.org/10.3390/app11146352