Periodic Multilayer for X-ray Spectroscopy in the Li K Range
Abstract
:Featured Application
Abstract
1. Introduction
- present a high reflectance in the Li K range;
- present a narrow bandwidth;
- minimize the contribution of the high diffraction orders;
- have a period leading to a Bragg angle at the center of the angular range spanned by standard spectrometers used in SEM and EPMA.
2. Materials and Methods
3. Results
4. Discussion
- has a quite high reflectance (0.32 at 51.5 eV, for example); let us note that the measured reflectance is lower than the one expected for a perfect multilayer, i.e., without roughness or interdiffusion (0.404 @ 51.5 eV), so there is still some room to improve the reflectance; an optimized reflectance is mandatory when working in this spectral range, as the K fluorescence yield of lithium is very low, 9 10−5 [25], and as the windows used in front of the detector or between the sample and spectrometer chambers of EPMA absorb many useful photons; if no care is taken to choose these windows, their transmission can be as low as 10−10 (a polymer having a density of 1.11 g.cm−3, such as polyimide, having a total thickness of 2 µm), jeopardizing the measurement of the Li K emission; this transmission can be as high as 5 10−3 if the setup is optimized (suppression of the window between the sample and spectrometer chambers, use of a low density polymer of 0.9 g.cm−3, such as polypropylene, having a thickness of 0.5 µm and supported by a grid having a 50% transmission);
- presents a quite narrow bandwidth (mean of 3.5 eV, leading to a resolving power E/ΔE = 0.07), see Table 1; this value is smaller than the width of the Li K emission band, which can be 10 eV wide [5,6,7,8,9]; thus, it should be possible to obtain an idea of the chemical state of the lithium atoms from the examination of the shape of the Li K spectrum and its comparison to those of the reference samples, whereas with a grating spectrometer having a resolving power of 0.01 or better, it is possible to determine the chemical state of a lithium atom directly from the examination of the shape of its Li K emission band;
- rejects the radiation diffracted at high orders (see Table 1 and Figure 3) moderately for the second order and efficiently for the third order; the rejection of the second order diffracted radiation with a perfect multilayer is expected from simulations to be between 150 and 200, i.e., two or four times better than the measured one;
- works around a glancing angle around 30°, which is in the middle of the angular range scanned by standard spectrometers equipping EPMA.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Liu, H.; Zhu, Z.; Yan, Q.; Yu, S.; He, X.; Chen, Y.; Zhang, R.; Ma, L.; Liu, T.; Li, M.; et al. A Disordered Rock Salt Anode for Fast-Charging Lithium-Ion Batteries. Nature 2020, 585, 63–67. [Google Scholar] [CrossRef]
- John, T.; Gussone, N.; Podladchikov, Y.Y.; Bebout, G.E.; Dohmen, R.; Halama, R.; Klemd, R.; Magna, T.; Seitz, H.-M. Volcanic Arcs Fed by Rapid Pulsed Fluid Flow through Subducting Slabs. Nature Geosci. 2012, 5, 489–492. [Google Scholar] [CrossRef]
- Verlaguet, A.; Brunet, F.; Goffé, B.; Menut, D.; Findling, N.; Poinssot, C.; Huet, B. Selective Transfer of Li-Al-Rich Phyllosilicate to Metamorphic Veins (Western Alps): Laser Induced Breakdown Spectroscopy (LIBS) Compositional Profiles and Microstructural Characterization. J. Geodyn. 2016, 101, 51–72. [Google Scholar] [CrossRef] [Green Version]
- Jonnard, P.; Bonnelle, C. Cauchois and Sénémaud Tables of Wavelengths of X-Ray Emission Lines and Absorption Edges. X Ray Spectrom. 2011, 40, 12–16. [Google Scholar] [CrossRef] [Green Version]
- Aita, O.; Sagawa, T. Soft X-Ray Emission Spectra of Light Elements. I. Li, Be, B, Al and Si. J. Phys. Soc. Jpn. 1969, 27, 164–175. [Google Scholar] [CrossRef]
- Crisp, R.S. The emission and absorption edges of lithium and magnesium in Li-Mg alloys. In Inner-Shell and X-Ray Physics of Atoms and Solids; Fabian, D.J., Kleinpoppen, H., Watson, L.M., Eds.; Springer US: Boston, MA, USA, 1981; pp. 625–629. ISBN 978-1-4615-9238-9. [Google Scholar]
- Crisp, R.S.; Williams, S.E. The K Emission Spectrum of Metallic Lithium. Phil. Mag. 1960, 5, 525–527. [Google Scholar] [CrossRef]
- Erko, A.; Firsov, A.; Gubzhokov, R.; Bjeoumikhov, A.; Günther, A.; Langhoff, N.; Bretschneider, M.; Höhn, Y.; Wedell, R. New Parallel Wavelength-Dispersive Spectrometer Based on Scanning Electron Microscope. Opt. Express 2014, 22, 16897–16902. [Google Scholar] [CrossRef] [PubMed]
- Lyalin, A.; Kuznetsov, V.G.; Nakayama, A.; Abarenkov, I.V.; Tupitsyn, I.I.; Gabis, I.E.; Uosaki, K. Taketsugu Soft X-Ray Li-K and Si-L2,3 Emission from Crystalline and Amorphous Lithium Silicides in Lithium-Ion Batteries Anode. J. Electrochem. Soc. A 2019, 166, 5362–5368. [Google Scholar] [CrossRef]
- Terauchi, M.; Koshiya, S.; Satoh, F.; Takahashi, H.; Handa, N.; Murano, T.; Koike, M.; Imazono, T.; Koeda, M.; Nagano, T.; et al. Chemical State Information of Bulk Specimens Obtained by SEM-Based Soft-X-Ray Emission Spectrometry. Microsc. Microanal. 2014, 20, 692–697. [Google Scholar] [CrossRef]
- Hafner, A.; Anklamm, L.; Firsov, A.; Firsov, A.; Löchel, H.; Sokolov, A.; Gubzhokov, R.; Erko, A. Reflection Zone Plate Wavelength-Dispersive Spectrometer for Ultra-Light Elements Measurements. Opt. Express 2015, 23, 29476–29483. [Google Scholar] [CrossRef]
- Yanagihara, M.; Yamashita, K.; Hosokawa, Y.; Gao, N.; Janssens, K.; Simionovici, A.; Schroer, C.; Lengeler, B. X-Ray Optics. In X-Ray Spectrometry: Recent Technological Advances; Tsuji, M., Injuk, J., Van Grieken, R., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2004; pp. 63–131. ISBN 978-0-470-02043-2. [Google Scholar]
- Hombourger, C.; Jonnard, P.; André, J.-M.; Chauvineau, J.-P. Use of Layered Synthetic Microstructures for the Quantitative X-ray Analysis of Light Elements. X Ray Spectrom. 1999, 28, 163–167. [Google Scholar] [CrossRef]
- André, J.-M.; Jonnard, P.; Michaelsen, C.; Wiesmann, J.; Bridou, F.; Ravet, M.-F.; Jérome, A.; Delmotte, F.; Filatova, E.O. La/B4C Small Period Multilayer Interferential Mirror for the Analysis of Boron. X-Ray Spectrom. 2005, 34, 203–206. [Google Scholar] [CrossRef]
- Le Guen, K.; Maury, H.; André, J.-M.; Jonnard, P.; Hardouin, A.; Delmotte, F.; Ravet-Krill, M.-F. X-Ray Spectroscopic Application of Cr∕Sc Periodic Multilayers. Appl. Phys. Lett. 2007, 91, 234104. [Google Scholar] [CrossRef] [Green Version]
- Pelizzo, M.G.; Corso, A.J.; Zuppella, P.; Nicolosi, P. Multilayer Coatings and Their Use in Spectroscopic Applications. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2013, 720, 49–52. [Google Scholar] [CrossRef]
- Jonnard, P.; Wu, M.; Le Guen, K.; Giglia, A.; Koshmak, K.; Huang, Q.; Zhang, Z.; Wang, Z.; Estève, I.; Menguy, N.; et al. Characterization of Sc/Mg Multilayers with and without Co Barriers Layers for x-Ray Spectroscopy in the Water Window Range. J. Appl. Phys. 2019, 126, 195301. [Google Scholar] [CrossRef]
- Chkhalo, N.I.; Pariev, D.E.; Polkovnikov, V.N.; Salashchenko, N.N.; Shaposhnikov, R.A.; Stroulea, I.L.; Svechnikov, M.V.; Vainer, Yu.A.; Zuev, S.Yu. Be/Al-Based Multilayer Mirrors with Improved Reflection and Spectral Selectivity for Solar Astronomy above 17nm Wavelength. Thin Solid Films 2017, 631, 106–111. [Google Scholar] [CrossRef]
- Chkhalo, N.I.; Lopatin, A.; Nechay, A.; Pariev, D.E.; Pestov, A.; Polkovnikov, V.N.; Salashchenko, N.; Schäfers, F.; Sertsu, M.; Sokolov, A.; et al. Beryllium-Based Multilayer Mirrors and Filters for the Extreme Ultraviolet Range. J. Nanosci. Nanotechnol. 2019, 19, 546–553. [Google Scholar] [CrossRef]
- Pleshkov, R.S.; Zuev, S.Yu.; Polkovnikov, V.N.; Salashchenko, N.N.; Svechnikov, M.V.; Chkhalo, N.I.; Jonnard, P. The Smoothing Effect of Si Layers in Multilayer Be/Al Mirrors for the 17- to 31-Nm Range. Tech. Phys. 2020, 65, 1786–1791. [Google Scholar] [CrossRef]
- Windt, D.L.; Donguy, S.; Seely, J.F.; Kjornrattanawanich, B.; Gullikson, E.M.; Walton, C.C.; Golub, L.; DeLuca, E. EUV Multilayers for Solar Physics. Proc. SPIE 2004, 5168, 1–11. [Google Scholar] [CrossRef]
- Polkovnikov, V.N.; Salashchenko, N.N.; Svechnikov, M.V.; Chkhalo, N.I. Beryllium-Based Multilayer X-Ray Optics. Phys. Usp. 2020, 63, 83. [Google Scholar] [CrossRef]
- Svechnikov, M. Multifitting: Software for the Reflectometric Reconstruction of Multilayer Nanofilms. J. Appl. Cryst. 2020, 53, 244–252. [Google Scholar] [CrossRef]
- Nannarone, S.; Borgatti, F.; DeLuisa, A.; Doyle, B.P.; Gazzadi, G.C.; Giglia, A.; Finetti, P.; Mahne, N.; Pasquali, L.; Pedio, M.; et al. The BEAR Beamline at Elettra. AIP Conf. Proc. 2004, 705, 450–453. [Google Scholar] [CrossRef]
- Krause, M.O. Atomic Radiative and Radiationless Yields for K and L Shells. J. Phys. Chem. Ref. Data 1979, 8, 307–327. [Google Scholar] [CrossRef] [Green Version]
- Papaconstantopoulos, D.A. Handbook of the Band Structure of Elemental Solids: From Z = 1 To Z = 112, 2nd ed.; Springer US: Boston, MA, USA, 2015; ISBN 978-1-4419-8263-6. [Google Scholar]
- Hovington, P.; Timoshevskii, V.; Burgess, S.; Demers, H.; Statham, P.; Gauvin, R.; Zaghib, K. Can We Detect Li K X-Ray in Lithium Compounds Using Energy Dispersive Spectroscopy? Scanning 2016, 38, 571–578. [Google Scholar] [CrossRef] [Green Version]
Photon Energy (eV) | Angle (°) | Bandwidth (eV) | R1 | R1/R2 | R1/R3 |
---|---|---|---|---|---|
47.6 | 33.7 | 3.1 | 0.282 | 82 | 737 |
49.5 | 32.1 | 3.3 | 0.300 | 83 | 667 |
51.5 | 30.6 | 3.5 | 0.318 | 64 | 432 |
53.4 | 29.2 | 3.8 | 0.336 | 58 | 618 |
55.3 | 27.9 | 4.1 | 0.357 | 50 | 643 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polkonikov, V.; Chkhalo, N.; Pleshkov, R.; Giglia, A.; Rividi, N.; Brackx, E.; Le Guen, K.; Ismail, I.; Jonnard, P. Periodic Multilayer for X-ray Spectroscopy in the Li K Range. Appl. Sci. 2021, 11, 6385. https://doi.org/10.3390/app11146385
Polkonikov V, Chkhalo N, Pleshkov R, Giglia A, Rividi N, Brackx E, Le Guen K, Ismail I, Jonnard P. Periodic Multilayer for X-ray Spectroscopy in the Li K Range. Applied Sciences. 2021; 11(14):6385. https://doi.org/10.3390/app11146385
Chicago/Turabian StylePolkonikov, Vladimir, Nikolai Chkhalo, Roman Pleshkov, Angelo Giglia, Nicolas Rividi, Emmanuelle Brackx, Karine Le Guen, Iyas Ismail, and Philippe Jonnard. 2021. "Periodic Multilayer for X-ray Spectroscopy in the Li K Range" Applied Sciences 11, no. 14: 6385. https://doi.org/10.3390/app11146385
APA StylePolkonikov, V., Chkhalo, N., Pleshkov, R., Giglia, A., Rividi, N., Brackx, E., Le Guen, K., Ismail, I., & Jonnard, P. (2021). Periodic Multilayer for X-ray Spectroscopy in the Li K Range. Applied Sciences, 11(14), 6385. https://doi.org/10.3390/app11146385