Insight in the Crystallization Kinetics of AlPO4-11 Molecular Sieve Using Di-Isopropylamine as Template
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Cheetham, A.K.; Ferey, G.; Loiseau, T. Open Framework Inorganic Materials. Angew. Chem. Int. Ed. 1999, 38, 3268–3292. [Google Scholar] [CrossRef]
- Flanigen, E.M.; Lok, B.M.; Patton, R.L.; Wilson, S.T. Aluminophosphate Molecular Sieves and the Periodic Table. Stud. Surface Sci. Catal. 1986, 28, 103–112. [Google Scholar]
- Lok, B.M.; Messina, C.A.; Patton, R.L.; Gajek, R.T.; Cannon, T.R.; Flanigen, E.M. Crystalline Silicoaluminophosphates. U.S. Patent 4,440,871, 3 April 1984. [Google Scholar]
- Messina, C.A.; Lok, B.M.; FlSanigen, E.M. Crystalline Ferroaluminophosphates. U.S. Patent 4,554,143, 19 November 1985. [Google Scholar]
- Wilson, S.T.; Flanigen, E.M. Crystalline Metal Aluminophosphates. U.S. Patent 4,567,029, 28 January 1986. [Google Scholar]
- Lok, B.M.; Messina, C.A.; Patton, R.L.; Gajek, R.T.; Cannon, T.R.; Flanigen, E.M. Silicoaluminophosphate molecular sieves: Another new class of microporous crystalline inorganic solids. J. Am. Chem. Soc. 1984, 106, 6092–6093. [Google Scholar] [CrossRef]
- Meier, W.M.; Olson, D.H.; Baerlocher, C. Atlas of Zeolite Structure Types, 4th ed.; Elsevier: New York, NY, USA, 1996. [Google Scholar]
- Bennett, J.M.; Richardson, J.W.; Pluth, J.J.; Smith, J.V. Aluminophosphate molecular sieve AlPO4-11: Partial refinement from powder data using a pulsed neutron source. Zeolites 1987, 7, 160–162. [Google Scholar] [CrossRef]
- Araujo, A.S.; Diniz, J.C.; Silva, A.O.S.; Melo, R.A.A. Hydrothermal synthesis of cerium aluminophosphate. J. Alloys Compd. 1997, 250, 532–535. [Google Scholar] [CrossRef]
- Khouzami, R.; Coudurier, G.; Lefebvre, F.; Vedrine, J.C.; Mentzen, B.F. X-ray diffraction and solid-state nmr studies of AEL molecular sieves: Effect of hydration. Zeolites 1990, 10, 183–188. [Google Scholar] [CrossRef]
- McCullen, S.B.; Reischman, P.T.; Olson, D.H. Hexane and benzene adsorption by aluminophosphates and SSZ-24: The effect of pore size and molecular sieve composition. Zeolites 1993, 13, 640–644. [Google Scholar] [CrossRef]
- Bandyopadhyay, M.; Bandyopadhyay, R.; Kubota, Y.; Sugi, Y. Synthesis of AlPO4-5 and AlPO4-11 Molecular Sieves by Dry-Gel Conversion Method. Chem. Lett. 2000, 29, 1024–1025. [Google Scholar] [CrossRef]
- Wang, C.; Lv, G.; Li, P.; Hou, G.; Qu, W.; Ma, H.; Wang, D.; Tian, Z. Synthesis of regularly shaped AlPO4-11 molecular sieve through a solid transformation approach. Microporous Mesoporous Mater. 2020, 295, 109962. [Google Scholar] [CrossRef]
- Zhu, G.; Qiu, S.; Gao, F.; Wu, G.; Wang, R.; Li, B.; Fang, Q.; Li, Y.; Gao, B.; Xu, X.; et al. Synthesis of aluminophosphate molecular sieve AlPO4-11 nanocrystals. Microporous Mesoporous Mater. 2001, 50, 129–135. [Google Scholar] [CrossRef]
- Martins, A.C.; Fernandez-Felisbino, R.; Ruotolo, L.A.M. Ionothermal synthesis of aluminophosphates used for ion exchange: Influence of choline chloride/urea ratio. Microporous Mesoporous Mater. 2012, 149, 55–59. [Google Scholar] [CrossRef]
- Geng, L.; Dong, H.; Liu, X.; Zhang, B. Efficient Manipulation of Continuous AFI-Type Aluminophosphate Membranes with Distinctive Microstructures on Macroporous α-Al2O3 Substrates. Molecules 2018, 23, 1127. [Google Scholar] [CrossRef] [Green Version]
- Machac, P.; Alauzun, J.G.; Styskalik, A.; Debecker, D.P.; Mutin, P.H.; Pinkas, J. Synthesis of high surface area aluminophosphate and phosphonate xerogels by non-hydrolytic sol-gel reactions. Microporous Mesoporous Mater. 2021, 311, 110682. [Google Scholar] [CrossRef]
- Xu, J.; Liu, Y.; Huang, Y. Ultrafast Crystallization of AlPO4-5 Molecular Sieve in a Deep Eutectic Solvent. J. Phys. Chem. C 2021, 125, 8876–8889. [Google Scholar] [CrossRef]
- Schmidt, W.; Schüth, F.; Reichert, H.; Unger, K.; Zibrowius, B. VPI-5 and related aluminophosphates: Preparation and thermal stability. Zeolites 1992, 12, 2–8. [Google Scholar] [CrossRef]
- Young, D.; Davis, M.E. Studies on SAPO-5: Synthesis with higher silicon contents. Zeolites 1991, 11, 277–281. [Google Scholar] [CrossRef]
- Davis, M.E.; Montes, C.; Hathaway, P.E.; Garces, J.M. Zeolites: Facts, Figures, Future; Jacobs, P.A., Van Santen, R.A., Eds.; Elsevier: Amsterdam, The Netherlands, 1989; p. 199. [Google Scholar]
- Flanigen, E.M. Zeolites Chemistry and Catalysis; ACS Monograph Series 171; Rabo, J., Ed.; American Chemical Society: Washington, DC, USA, 1976; p. 80. [Google Scholar]
- Araujo, A.S.; Fernandes, V.J., Jr.; Silva, A.O.S.; Diniz, J.C.; Silva, C.C.; Santos, R.H.A. Hydrothermal synthesis and crystallographic properties of silicoaluminophosphate with different content of silicon. Mater. Res. Bull. 1999, 34, 1369–1373. [Google Scholar] [CrossRef]
- Wilson, S.T.; Lok, B.M.; Messina, C.A.; Cannan, T.R.; Flanigen, E.M. Aluminophosphate Molecular Sieves: A New Class of Microporous Crystalline Inorganic Solids. Intrazeolite Chem. ACS Symp. Ser. 1983, 218, 79–106. [Google Scholar]
- Davis, M.E.; Montes, C.; Hathaway, P.E.; Arhancet, J.P.; Hasha, D.L.; Garces, J.M. Physicochemical properties of VPI-5. J. Am. Chem. Soc. 1989, 111, 3919–3924. [Google Scholar] [CrossRef]
- Ojo, A.F.; Dwyer, J.; Dewing, J.; O’Malley, P.J.; Nabhan, A. Synthesis and properties of SAPO-5 molecular sieves. Silicon incorporation into the framework. J. Chem. Soc. Faraday Trans. 1992, 88, 105–112. [Google Scholar] [CrossRef]
- Araujo, A.S.; Fernandes, V.J., Jr.; Silva, A.O.S.; Diniz, J.C. Evaluation of the ALPO4-11 Crystallinity by Thermogravimetry. J. Therm. Anal. Cal. 1999, 56, 151–157. [Google Scholar] [CrossRef]
Internal Tetrahedra | External Tetrahedra | ||
---|---|---|---|
Vibration | Wavenumber (cm−1) | Vibration | Wavenumber (cm−1) |
Asymmetric stretch (b) | 1250–950 | Asymmetric stretch (a) | 1050–1150Sh |
Symmetric stretch (d) | 720–650 | Symmetric stretch (c) | 750–820 |
Bend (T-O) (f) | 420–500 | Double ring (e) | 650–500 |
Sample | Pore Volume Occupied by Molecules (cm3 g−1) a | ||
---|---|---|---|
Water | DIPA | Total | |
S6h | 0.048 | 0.129 | 0.177 |
S10h | 0.047 | 0.121 | 0.168 |
S15h | 0.038 | 0.126 | 0.164 |
S48h | 0.034 | 0.134 | 0.168 |
S74h | 0.027 | 0.126 | 0.153 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mapele, R.O.; Silva, A.O.S.; Souza, M.J.B.; Pedrosa, A.M.G.; Coriolano, A.C.F.; Fernandes, G.J.T.; Fernandes, V.J., Jr.; Araujo, A.S. Insight in the Crystallization Kinetics of AlPO4-11 Molecular Sieve Using Di-Isopropylamine as Template. Appl. Sci. 2021, 11, 6544. https://doi.org/10.3390/app11146544
Mapele RO, Silva AOS, Souza MJB, Pedrosa AMG, Coriolano ACF, Fernandes GJT, Fernandes VJ Jr., Araujo AS. Insight in the Crystallization Kinetics of AlPO4-11 Molecular Sieve Using Di-Isopropylamine as Template. Applied Sciences. 2021; 11(14):6544. https://doi.org/10.3390/app11146544
Chicago/Turabian StyleMapele, Renilson O., Antonio O. S. Silva, Marcelo J. B. Souza, Anne M. G. Pedrosa, Ana C. F. Coriolano, Glauber J. T. Fernandes, Valter J. Fernandes, Jr., and Antonio S. Araujo. 2021. "Insight in the Crystallization Kinetics of AlPO4-11 Molecular Sieve Using Di-Isopropylamine as Template" Applied Sciences 11, no. 14: 6544. https://doi.org/10.3390/app11146544
APA StyleMapele, R. O., Silva, A. O. S., Souza, M. J. B., Pedrosa, A. M. G., Coriolano, A. C. F., Fernandes, G. J. T., Fernandes, V. J., Jr., & Araujo, A. S. (2021). Insight in the Crystallization Kinetics of AlPO4-11 Molecular Sieve Using Di-Isopropylamine as Template. Applied Sciences, 11(14), 6544. https://doi.org/10.3390/app11146544