Silicon Compounds in Sponges
Abstract
:1. Introduction
2. Materials and Research Methods
3. Research Methods
4. Results and Discussion
4.1. The Elemental Composition
4.2. X-ray Phase Analysis
4.3. Infrared (IR) Absorption Spectra
4.4. 29Si NMR Spectra
4.5. Thermal Properties
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Voronkov, M.G.; Zelchan, G.I.; Lukevits, E.Y. Silicium und Leben. Biochemie, Toxikologie und Farmakologie der Verbindungen des Silicium; Akad. Verlag: Berlin, Germany, 1975; 587p. [Google Scholar]
- Voronkov, M.G.; Kuznetsov, I.G. An Amazing Element of Life; Vostochno-Sibirskoe Izd.: Irkutsk, Russian, 1983; p. 107. (In Russian) [Google Scholar]
- Voronkov, M.G.; Kuznetsov, I.G. Silicon in Nature; Science: Novosibirsk, Russian, 1984; 157p. [Google Scholar]
- Voronkov, M.G.; Baryshok, V.P. The influence of silatranes on the physiological functions of animals and birds. Rossiysk. khimich. zhurnal. 2005, 49, 86–94. [Google Scholar]
- Kolesnikov, M.P. Forms of silicon in plants. Adv. Biol. Chem. 2001, 41, 301–332. [Google Scholar]
- Sergienko, V.I.; Zemnukhova, L.A.; Egorov, A.G.; Shkorina, E.D.; Vasilyuk, N.S. Renewable sources of chemical raw materials: Integrated processing of rice and buckwheat production waste. Ros. Chem. J. Ros. Chem. Soc. 2004, XLVIII, 116–124. [Google Scholar]
- Zemnukhova, L.A.; Egorov, A.G.; Fedorishcheva, G.A.; Barinov, N.N.; Sokolnitskaya, T.A.; Botsul, A.I. Properties of amorphous silica produced from rice and oat processing waste. Inorg. Mater. 2006, 42, 24–29. [Google Scholar] [CrossRef]
- Zemnukhova, L.A.; Babushkina, T.A.; Ziatdinov, A.M.; Kholomeydik, A.N. Impurity paramagnetic centers Fe (III) and Mn (II) centers in samples of amorphous silica of different origin. J. Appl. Chem. 2012, 85, 1011–1016. [Google Scholar] [CrossRef]
- Zemnukhova, L.A.; Nikolenko, Y.M. Study of rice husks and products of its processing by X-ray photoelectron spectroscopy. Russ. J. Gen. Chem. 2011, 81, 694–700. [Google Scholar] [CrossRef]
- Zemnukhova, L.A.; Panasenko, A.E.; Artem’yanov, A.P.; Tsoy, E.A. Dependence of porosity of amorphous silicon dioxide prepared from rice straw on plant variety. BioResources 2015, 10, 3713–3723. [Google Scholar] [CrossRef] [Green Version]
- Zemnukhova, L.A.; Kholomeydik, A.N.; Slobodyuk, A.B. 29Si NMR spectra of amorphous silicon dioxide samples of different genetics. Abstracts of reports. In XVII International Scientific and Technical Conference "Priority Directions of Development of Science and Technology”; Publishing house Innovative technologies: Tula, Russian, 2015; pp. 40–43. (In Russian) [Google Scholar]
- Vlasova, A.G.; Florinskaya, V.A. (Eds.) Infrared Spectra of Inorganic Glasses and Crystals; Chemistry: Leningrad, Russian, 1972; 304p. [Google Scholar]
- Ocana, M.; Fornes, V.; Serna, C.J. The variability of the infrared powder spectrum of amorphous SiO2. J. Non-Cryst. Solids 1982, 107, 187–192. [Google Scholar] [CrossRef]
- Ocana, M.; Fornes, V.; Garcia-Ramos, J.V.; Serna, C.J. Polarization effects in the infrared spectra of α-quartz and α-cristobalite. Phys. Chem. Mater. 1987, 14, 527–532. [Google Scholar]
- Tarasevich, B.N. IR Spectra of the Main Classes of Organic Compounds; Lomonosov Moscow University: Moscow, Russian, 2012; 55p. (In Russian) [Google Scholar]
- Pretsch, E.; Bullmann, P.; Affolter, C. Structure Determination of Organic Compounds; (Tables of Spectra data); Mir: Moscow, Russian, 2006; 438p. (In Russian) [Google Scholar]
- Silverstein, R.; Webster, F.; Kiml, D. Spectrometric Identification of Organic Compounds; Binom: Moscow, Russian, 2011; 557p. (In Russian) [Google Scholar]
- Xu, A.; Ma, Y.; Colfen, H. Biomimetic mineralization. J. Mater. Chem. 2007, 17, 415–449. [Google Scholar] [CrossRef]
- Ehrlich, H.; Ereskovsky, A.V.; Drozdov, A.; Krylova, D.; Hanke, T.; Meissner, H.; Heinemann, S.; Worch, H. A modern approach to demineralisation of spicules in the glass sponges (Hexactinellida: Porifera) for the purpose of extraction and examination of the protein matrix. Russ. J. Mar. Biol. 2006, 32, 186–193. [Google Scholar] [CrossRef]
- Ehrlich, H.; Deutzmann, R.; Brunner, E.; Cappellini, E.; Koon, H.; Solazzo, C.; Yang, Y.; Ashford, D.; Thomas-Oates, J.; Lubeck, M.; et al. Mineralization of the metre-long biosilica structures of glass sponges is templated on hydroxylated collagen. Nat. Chem. 2010, 2, 1084–1088. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, H.; Maldonado, M.; Parker, A.R.; Kulchin, Y.N.; Schilling, J.; Köhler, B.; Skrzypczak, U.; Simon, P.; Reiswig, H.M.; Tsurkan, M.V.; et al. Supercontinuum Generation in Naturally Occurring Glass Sponges Spicules. Adv. Opt. Mater. 2016, 4, 1608–1613. [Google Scholar] [CrossRef] [Green Version]
- Ehrlich, H.; Wysokowski, M.; Żółtowska-Aksamitowska, S.; Petrenko, I.; Jesionowski, T. Collagens of poriferan origin. Mar. Drugs 2018, 16, 79. [Google Scholar] [CrossRef] [Green Version]
- Ehrlich, H. Enigmatic structural protein spongin. In Marine Biological Materials of Invertebrate Origin; Gorb, S.N., Ed.; Springer: Cham, Switzerland, 2019; pp. 161–170. [Google Scholar]
- Sanchez, C.; Arribart, H.; Guille, M.M.G. Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nat. Mater. 2005, 4, 277–288. [Google Scholar] [CrossRef]
- Nudelman, F.; Sommerdijk, N.A. Biomineralization as an inspiration for materials chemistry. Angew. Chem. Int. Ed. 2012, 51, 6582–6596. [Google Scholar] [CrossRef]
- Chevalier, Y.; Grillet, A.; Rahmi, M.-I.; Liere, C.; Masure, M.; Hemery, P.; Babonneau, F. The structure of porous silica-polysiloxane hybrid materials. Mater. Sci. Eng. 2002, 21, 143–150. [Google Scholar] [CrossRef]
- Lyubarev, A.E.; Kurganov, B.I. Study of irreversible thermal denaturation of proteins by differential scanning calorimetry. Adv. Biol. chem. 2000, 40, 43–84. [Google Scholar]
- Ehrlich, H.; Worch, H. Sponges as natural composites: From biomimetic potential to development of new biomaterials. In Porifera Research: Biodiversity, Innovation and Sustainability; Museu Nacional: Rio de Janeiro, Brasil, 2007; pp. 217–223. ISBN 978-85-7427-023-4. [Google Scholar]
- Wysokowski, M.; Jesionowski, T.; Ehrlich, H. Biosilica as a source for inspiration in biological materials science. Am. Mineral. 2018, 103, 665–691. [Google Scholar] [CrossRef]
- Szatkowski, T.; Wysokowski, M.; Lota, G.; Pęziak, D.; Bazhenov, V.V.; Nowaczyk, G.; Walter, J.; Molodtsov, S.L.; Stöcker, H.; Himcinschi, C.; et al. Novel nanostructured hematite-spongin composite developed using an extreme biomimetic approach. RSC Adv. 2015, 5, 79031–79040. [Google Scholar] [CrossRef] [Green Version]
- Szatkowski, T.; Siwínska-Stefánska, K.; Wysokowski, M.; Stelling, A.L.; Joseph, Y.; Ehrlich, H.; Jesionowski, T. Immobilization of titanium(IV) oxide onto 3D spongin scaffolds of marine sponge origin according to extreme biomimetics principles for removal of C.I. basic blue 9. Biomimetics 2017, 2, 4. [Google Scholar] [CrossRef] [Green Version]
- Aizenberg, J.; Sundar, V.C.; Yablon, A.D.; Weaver, J.C.; Chen, G. Biological glass fibers: Correlation between optical and structural properties. Proc. Natl. Acad. Sci. 2004, 101, 3358–3363. [Google Scholar] [CrossRef] [Green Version]
- Müller, W.E.G.; Grachev, M.A. Biosilica in Evolution, Morphogenesis, and Nanobiotechnology: Case Study Lake Baikal; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009; p. 421. [Google Scholar]
- Drozdov, A.L.; Andreykin, N.A.; Dorofeev, A.G. Structure and physico-chemical properties of organosilicon ike composite spicules of the glass sponge Hyalonema sieboldi. Mater. Res. Bull. 2018, 105, 372–376. [Google Scholar] [CrossRef]
- Monn, M.A.; Weaver, J.C.; Zhang, T.; Aizenberg, J.; Kesari, H. New functional insights into the internal architecture of the laminated anchor spicules of Euplectella aspergillum. Proc. Natl. Acad. Sci. USA 2015, 112, 4976–4981. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, M.C.; Aizenberg, J.; Weaver, J.C.; Bertoldi, K. Mechanically robust lattices inspired by deep-sea glass sponges. Nat. Mater. 2020, 20, 237–241. [Google Scholar] [CrossRef]
- Kulchin, Y.N.; Bukin, O.A.; Voznesenskii, S.S.; Galkina, A.N.; Gnedenkov, S.V.E.; Drozdov, A.L.; Kuryavyi, V.G.; Mal’tseva, T.L.; Nagornyi, I.G.; Sinebryukhov, S.L.; et al. Optical fibres based on natural biological minerals—sea sponge spicules. Quantum Electron. 2008, 38, 51–55. [Google Scholar] [CrossRef]
- Drozdov, A.L.; Tabachnik, K.P.; Eckert, K.; Tyurin, S.A. The organization of the skeleton and the typology of the axial channels of the axial filaments of spicules in glass sponges. In Perspektivnyye Napravleniya Razvitiya Nanotekhnologiy v DVO RAN; Inst. Avtom. Prots. Uprav., Dal’nevost. Otd. Ross. Akad. Nauk: Vladivostok, Russian, 2009; Volume 2, pp. 87–99. (In Russian) [Google Scholar]
- Karpenko, A.A.; Drozdov, A.L. Skeletons of Glass Sponges as a Substrate for Creating Functional Composite Organosilicon Materials. J. Mat. App. 2019, 8, 20–27. [Google Scholar] [CrossRef]
- Drozdov, A.L.; Zhuravlev, A.Y.; Karpenko, A.A.; Kolesnikov, K.A.; Ivantsov, A.Y. Morphology and chemical composition of siliceous spicules from an early Cambrian sponge. Russ. J. Mar. Biol. 2021, 47, 6, in press. [Google Scholar]
- Khrunyk, Y.; Lach, S.; Petrenko, I.; Ehrlich, H. Progress in Modern Marine Biomaterials Research. Mar. Drugs 2020, 18, 589. [Google Scholar] [CrossRef]
- Mónica, A. Avaliação da Importância, Potencial e Constrangimentos da Designação do Banco Gorringe como Sítio de Interesse Comunitário. Master’s Thesis, Universidade de Lisboa, Lisboa, Portugal, 2014. [CrossRef]
- Gebruk, A.V.; Priede, I.G.; Fenchel, T.; Uiblein, F. Benthos of the sub-polar front area on the Mid-Atlantic Ridge: Results of the ECOMAR project. Mar. Biol. Res. 2013, 9, 443–446. [Google Scholar] [CrossRef] [Green Version]
- Van Soest, R.W.M.; Meesters, E.H.W.G.; Becking, L.E. Deep-water sponges (Porifera) from Bonaire and Klein Curaçao, Southern Caribbean. Zootaxa 2014, 3878, 401–443. [Google Scholar] [CrossRef] [Green Version]
- Hajdu, E.; Castello-Branco, C.; Lopes, D.A.; Paulo, S.Y.G.; Perez, J.A.A. Deep-sea dives reveal an unexpected hexactinellid sponge garden on the Rio Grande Rise (SW Atlantic). A mimicking habitat? Deep Sea Res. Part II Trop. Stud. Oceanogr. 2017, 146, 93–100. [Google Scholar] [CrossRef]
- MarineE-Tech Research Expedition Blog. Available online: http://marinee-tech.blogspot.com/2018/11 (accessed on 8 May 2021).
- Farrea, nr. Occa Erecta. Available online: https://www.ncei.noaa.gov/waf/okeanos-animal-guide/Farreidae015.html (accessed on 8 May 2021).
- Boury-Esnault, N.; Vacelet, J.; Dubois, M.; Goujard, A.; Fourt, M.; Perez, T.; Chevaldonne, P. New hexactinellid sponges from deep Mediterranean canyons. Zootaxa 2017, 4236, 118–134. [Google Scholar] [CrossRef] [PubMed]
- Ereskovsky, A.V.; Chernogor, L.I.; Belikov, S.I. Ultrastructural description of development and cell composition of primmorphs in the endemic Baikal sponge Lubomirskia baicalensis. Zoomorph 2016, 135, 1–17. [Google Scholar] [CrossRef]
№ * Samples | Class | Family | Species | Skeleton Type | Figure | Source |
---|---|---|---|---|---|---|
1 | Hexactinellida | Pheronematidae | Schulzeviella gigas spinosum | Dictional strands | 2 | Orig. |
2 | Sericolophus sp. | Dictional strands | 3 | [21] | ||
3 | Rossellidae | Asconema setubalense | Dictional strands | 4 | [39,42] | |
4 | Euplectellida | Euplectella aspergillum | Dictional strands and lissacinosan | 5 | [35] | |
5 | Euplectella suberia | Dictional strands and lissacinosan | 6 | [43] | ||
6 | Dactylocalycidae | Dactylocalyx sp. | Lissacinosan | 7 | [44] | |
7 | Farreidae | Sarostegia oculata | Lissacinosan | 8 | [45,46] | |
8 | Farrea sp. | Pharreoid | 9 | [47,48] | ||
9 | Demospongiae | Lubomirskiidae | Lubomirskia baicalensis | Small spicules | 10 | [49] |
Sample No. According to Table 1 Element Content, % | O | N | C | Si | Na |
---|---|---|---|---|---|
2 | 23.4 | n/d | 69.4 | 5.4 | 1.8 |
7 | 26.9 | 7.0 | 60.9 | 3.2 | 2.0 |
Sample No According to Table 1 | Sample Status | Composition of the Crystal Phase |
---|---|---|
1 (Schulzeviella gigas) | Amorphous | |
2 (Sericolophus sp.) | Amorphous | |
3 (Asconema setubalense) | Amorphous-crystalline | Halite (NaCl), magnesian calcite (Mg0.1CaO0.9CO3) |
4 (Euplectella aspergillum) | Tridymite (SiO2), quartz (SiO2), aragonite (CaCO3), calcite (CaCO3), magnesian calcite (Mg0.129CaO0.871CO3), zinc oxide (ZnO) | |
5 (Euplectella suberia) | Calcite (CaCO3), magnesian calcite (Mg0.129CaO0.871CO3), aragonite (CaCO3) | |
6 (Dactylocalyx sp.) | Calcite (CaCO3), magnesian calcite (Mg0.06CaO0.94CO3), aragonite (CaCO3) | |
7 (Sarostegia oculata) | Amorphous | |
8 (Farrea sp.) | Amorphous-crystalline | quartz (SiO2) |
9 (Lubomirskia baicalensis) | Amorphous |
Sample | Source, Silicon Dioxide Production Scheme | Q2 (SiO2(OH)2) | Q3 (SiO3OH) | Q4 (SiO4) | |||
---|---|---|---|---|---|---|---|
CS, ppm | I, % | CS, ppm | I, % | CS, ppm | I, % | ||
1 * | RH, scheme 1, 650 °C | - | n/f * | −103 | 8 | −112 | 91 |
2 * | RH, scheme 3 | −93 | 3 | −103 | 29 | −112 | 68 |
3 | Marine siliceous sponge Asconema setubalense | – | n/f | −103 | 30 | −112 | 70 |
4 * | Reagent “Water silicon acid” GOST 4214-78 | −93 | 9 | −102 | 33 | −111 | 58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drozdov, A.L.; Zemnukhova, L.A.; Panasenko, A.E.; Polyakova, N.V.; Slobodyuk, A.B.; Ustinov, A.Y.; Didenko, N.A.; Tyurin, S.A. Silicon Compounds in Sponges. Appl. Sci. 2021, 11, 6587. https://doi.org/10.3390/app11146587
Drozdov AL, Zemnukhova LA, Panasenko AE, Polyakova NV, Slobodyuk AB, Ustinov AY, Didenko NA, Tyurin SA. Silicon Compounds in Sponges. Applied Sciences. 2021; 11(14):6587. https://doi.org/10.3390/app11146587
Chicago/Turabian StyleDrozdov, Anatoliy L., Lyudmila A. Zemnukhova, Alexandr E. Panasenko, Nataliya V. Polyakova, Arseniy B. Slobodyuk, Alexandr Yu. Ustinov, Nina A. Didenko, and Sergey A. Tyurin. 2021. "Silicon Compounds in Sponges" Applied Sciences 11, no. 14: 6587. https://doi.org/10.3390/app11146587
APA StyleDrozdov, A. L., Zemnukhova, L. A., Panasenko, A. E., Polyakova, N. V., Slobodyuk, A. B., Ustinov, A. Y., Didenko, N. A., & Tyurin, S. A. (2021). Silicon Compounds in Sponges. Applied Sciences, 11(14), 6587. https://doi.org/10.3390/app11146587