Investigations of the Surface of Heritage Objects and Green Bioremediation: Case Study of Artefacts from Maramureş, Romania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Investigated Object
2.2. Analytical Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Albu, A.V.; Caciora, T.; Berdenov, Z.; Ilies, D.C.; Sturzu, B.; Sopota, D.; Herman, G.V.; Ilies, A.; Kecse, G.; Ghergheles, C.G. Digitalization of garment in the context of circular economy. Ind. Text. 2021, 72, 102–107. [Google Scholar] [CrossRef]
- Ilies, D.C.; Herman, G.V.; Caciora, T.; Ilies, A.; Indrie, L.; Wendt, J.A.; Axinte, A.; Diombera, M.; Lite, C.; Berdenov, Z.; et al. Considerations Regarding the Research for the Conservation of Heritage Textiles in Romania. In Waste in Textile and Leather Sectors; Körlü, A., Ed.; IntechOpen: Rijeka, Croatia, 2020; Chapter 10; pp. 88–93. [Google Scholar]
- Cappitelli, F.; Cattò, C.; Villa, F. The Control of Cultural Heritage Microbial Deterioration. Microorganisms 2020, 8, 1542. [Google Scholar] [CrossRef]
- Indrie, L.; Oana, D.; Ilies, M.; Ilies, D.C.; Lincu, A.; Ilies, A.; Baias, Ș.; Herman, G.; Onet, A.; Costea, M.; et al. Indoor air quality of museums and conservation of textiles art works. Case study: Salacea Museum House, Romania. Ind. Text. 2019, 70, 88–93. [Google Scholar] [CrossRef]
- Creangã, D.M. Cauzele degradarii bunurilor de patrimoniu pe suport de piele. Codrul Cosm. 2004, 10, 153–157. [Google Scholar]
- Di Carlo, E.; Chisesi, R.; Barresi, G.; Barbaro, S.; Lombardo, G.; Rotolo, V.; Sebastianelli, M.; Travagliato, G.; Palla, F. Fungi and Bacteria in Indoor Cultural Heritage Environments: Microbial-related Risks for Artworks and Human Health. Environ. Ecol. Res. 2016, 4, 257–264. [Google Scholar] [CrossRef]
- Jain, P.C. Microbial Degradation of Grains, Oil Seeds, Textiles, Wood, Corrosion of Metals and Bioleaching of Mineral Ores; Department of Applied Microbiology & Biotechnology, Dr. Harisingh Gour University: Sagar, India, 2008; Available online: http://awarticles.s3.amazonaws.com/PCJain2008MicrobialDegradationOfGrainsOilSeeds.pdf (accessed on 1 September 2020).
- De Leoa, F.; Urzì, C. Microfungi from Deteriorated Materials of Cultural Heritage. In Fungi from Different Substrates; Misra, J.K., Tewari, J.P., Deshmukh, S.K., Vagvolgyi, S., Eds.; Taylor and Francis Press: Abingdon, UK, 2015; pp. 144–158. [Google Scholar]
- Kavkler, K.; Gunde-Cimerman, N.; Zalar, P.; Demsar, A. Fungal contamination of textile objects preserved in Slovene museums and religious institutions. Int. Biodeter. Biodegr. 2015, 97, 51–59. [Google Scholar] [CrossRef]
- Caneva, G.; Nugari, M.P.; Salvadori, O. La biologia nel Restauro; Nardini Editore: Firenze, Italy, 1994. [Google Scholar]
- Sterflinger, K.; Piñar, G. Microbial deterioration of cultural heritage and works of art—Tilting at windmills? Appl. Microbiol. Biotechnol. 2013, 97, 9637–9646. [Google Scholar] [CrossRef] [Green Version]
- Valentin, N. Microbial contamination in museum collections: Organic materials. In Molecular Biology and Cultural Heritage; Saiz Jimenez, C., Ed.; Swets & Zeitlinger: Lisse, The Netherlands, 2003; pp. 85–91. [Google Scholar]
- Caneva, G.; Nugari, M.P.; Salvadori, O. Biology in the Conservation of Works of Art; Sintesi Grafica s.r.l.: Roma, Italy, 1991. [Google Scholar]
- Szostak-Kotowa, J. Biodeterioration of textiles. Int. Biodeterior. Biodegrad. 2004, 53, 165–170. [Google Scholar] [CrossRef]
- Mukerji, K.G.; Garg, K.L.; Mishra, A.K. Fungi in deterioration of museum objects. In Proceedings of the 3rd International conference on Biodeterioration of Cultural Property, Bangkok, Thailand, 4–7 July 1995; pp. 226–241. [Google Scholar]
- Kowalik, R. Microbiodeterioration of Library Materials. Restaurator 1980, 4, 99–114. [Google Scholar] [CrossRef]
- Montegut, D.; Indictor, N.; Koestler, R.J. Fungal deterioration of cellulosic textiles: A review. Int. Biodeterior. Biodegrad. 1991, 28, 209–226. [Google Scholar] [CrossRef]
- Arif Hossain, M. Investigating Bio Deterioration of Cultural Heritage: Detection and Identification of Microbial Communities and Biocides Application; University of Évora: Évora, Portugal, October 2017; Available online: https://www.academia.edu/32181292/Investigating_bio_deterioration_of_Cultural_Heritage_Detection_and_identification_of_microbial_com-408_munities_and_biocides_application (accessed on 10 September 2020).
- Sterflinger, K. Fungi as geologic agents. Geomicrobiol. J. 2000, 17, 97–124. [Google Scholar] [CrossRef]
- Vukojević, J.; Grbić, M.L. Moulds on paintings in Serbian fine art museums. Afr. J. Microbiol. Res. 2010, 4, 1453–1456. [Google Scholar]
- Manente, S.; Micheluz, A.; Ganzerla, R.; Ravagnan, G.; Gambaro, A. Chemical and biological characterization of paper: A case study using a proposed methodological approach. Int. Biodeter. Biodegr. 2012, 74, 99–108. [Google Scholar] [CrossRef]
- Di Carlo, E.; Barresi, G.; Palla, F. Biodeterioration. In Biotechnology and Conservation of Cultural Heritage; Palla, F., Barresi, G., Eds.; Springer: New York, NY, USA, 2017; pp. 1–32. [Google Scholar]
- Fierascu, I.; Dima, R.; Fierascu, R.C. Natural Extracts for preventing Artefacts Biodeterioration. In Proceedings of the 17 International Conference on Cultural Heritage and New Technologies (CHNT 17, 2012), Vienna, Austria, 5–7 November 2012; Fischer Ausserer, K., Ed.; Museen der Stadt Wien—Stadtarchäologie: Vienna, Austria, 2012. [Google Scholar]
- Pattnaik, S.; Subramanyam, V.R.; Kole, C. Antibacterial and antifungal activity of ten essential oils in vitro. Microbios 1996, 86, 237–246. [Google Scholar]
- Abad, M.J.; Ansuategui, M.; Bermejo, P. Active antifungal substances from natural sources. ARKIVOC 2007, 7, 116–145. [Google Scholar]
- Bayramoğlu, E.E.; Gülümser, G.; Karaboz, I. The Investigation of Antibacterial Activities of Some Essential Oils in Wet Blue Leather. Int. J. Nat. Eng. Scien. 2008, 2, 33–36. [Google Scholar]
- Guiamet, P.S.; Gómez de Saravia, S.G.; Arenas, P.; Pérez, M.L.; De la Paz, J.; Borrego, S.F. Natural products isolated from plants used in biodeterioration control. Pharmacologyonline 2006, 3, 537–544. [Google Scholar]
- Sasso, S.; Scrano, L.; Ventrella, E.; Bonomo, M.G.; Crescenzi, A.; Salzano, G.; Bufo, S.A. Natural biocides to prevent the microbial growth on cultural heritage. In Proceedings of the Conference Built Heritage 2013—Monitoring Conservation and Management, Milan, Italy, 18–20 November 2013; pp. 1035–1042. [Google Scholar]
- Orlita, A. Microbial biodeterioration of leather and its control: A review. Int. Biodeter. Biodegr. 2004, 53, 157–163. [Google Scholar] [CrossRef]
- Al-Hussaini, R.; Mahasneh, A.M. Microbial growth and quorum sensing antagonist activities of herbal plants extracts. Molecules 2009, 14, 3425–3435. [Google Scholar] [CrossRef]
- Abdel-Maksoud, G.; El-Amin, A.-R.; Afifi, F. Insecticidal activity of Cinnamomum cassia extractions against the common Egyptian mummies’ insect pest (Dermestes maculatus). Int. J. Conserv. Sci. 2014, 5, 355–368. [Google Scholar]
- Barresi, G.; Carlo, E.; Trapani, M.R.; Parisi, M.G.; Chillè, C.; Mulè, M.F.; Cammarata, M.; Palla, F. Marine organisms as source of bioactive molecules applied in restoration projects. Herit. Sci. 2015, 3, 17–20. [Google Scholar] [CrossRef] [Green Version]
- Borrego, S.; Valdés, O.; Vivar, I.; Lavin, P.; Guiamet, P.; Battistoni, P.; Gómez de Saravia, S.; Borges, P. Essential oils of plants as biocides against microorganisms isolated from Cuban and Argentine Documentary heritage. ISRN Microbiol. 2012, 826786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warscheid, T. Integrated concepts for the protection of cultural artifacts against biodeterioration. In Of Microbes and Art, the Role of Microbial Communities in the Deterioration and Protection of Cultural Heritage; Ciferri, O., Tiano, P., Mastromei, G., Eds.; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2000; pp. 185–201. [Google Scholar]
- Calvo, M.A.; Arosemena, E.L.; Shiva, C.; Adelantado, C. Antimicrobial activity of plant natural extracts and essential oils. In Science against Microbial Pathogens: Communicating Current Research and Technological Advances; Méndez-Villas, A., Ed.; Formatex Research Center: Badajoz, Spain, 2001; pp. 1179–1185. [Google Scholar]
- Rotolo, V.; Barresi, G.; Di Carlo, E.; Giordano, A.; Lombardo, G.; Crimi, E.; Costa, E.; Bruno, M.; Palla, F. Plant extracts as green potential strategies to control the biodeterioration of Cultural Heritage. Int. J. Conserv. Sci. 2016, 7, 839–846. [Google Scholar]
- Ćirković, I.; Jovalekić, M.; Jegorović, B. In vitro antibacterial activity of garlic and synergism between garlic and antibacterial drugs. Arch. Biol. Sci. 2012, 64, 1369–1375. [Google Scholar] [CrossRef]
- de la Paz, J.; Larionova, M.; Maceira, M.A.; Borrego, S.F.; Echevarría, E. Control of biodeterioration using a fraction isolated from leaves of Ricinus communis linn. Pharmacologyonline 2006, 3, 462–466. [Google Scholar]
- Guiamet, P.S.; de la Paz, N.J.; Arenas, P.M.; Gómez de Saravia, S.G. Differential sensitivity of Bacillus sp. isolated from archive materials to plant extracts. Pharmacologyonline 2008, 3, 649–658. [Google Scholar]
- Afifi, H.A.M. Comparative efficacy of some plant extracts against fungal deterioration of stucco ornaments in the Mihrab of Mostafa Pasha Ribate, Cairo, Egypt. Am. J. Biochem. Mol. Biol. 2012, 2, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Bacci, L.; Lima, J.K.A.; Araùjo, A.P.A.; Blank, A.F.; Silva, I.M.A.; Santos, A.A.; Santos, A.C.C.; Alves, P.B.; Picanço, M.C. Toxicity, behavior impairment, and repellence of essential oils from pepper-rosmarin and patchouli to termites. Entomol. Exp. Appl. 2015, 156, 66–76. [Google Scholar] [CrossRef]
- Stupar, M.; Grbić, M.L.J.; Džamić, A.; Unkovia, N.; Ristić, M.; Jelikić, A.; Vukojević, J. Antifungal activity of selected essential oils and biocide benzalkonium chloride against the fungi isolated from cultural heritage objects. S. Afr. J. Bot. 2014, 93, 118–124. [Google Scholar] [CrossRef]
- Savković, Z.D.; Stupar, M.Č.; Grbić, L.M.V.; Vukojević, J.B. Comparison of anti-Aspergillus activity of Origanum vulgare L. essential oil and commercial biocide based on silver ions and hydrogen peroxide. Acta Bot. Croat. 2016, 75, 121–128. [Google Scholar] [CrossRef] [Green Version]
- Bayramoglu, E. Unique biocide for the leather industry. J. Am. Leather Chem. Assoc. 2007, 102, 347–352. [Google Scholar]
- Casiglia, S.; Bruno, M.; Scandolera, E.; Senatore, F.; Senatore, F. Influence of harvesting time on composition of essential oil of Thymus capitatus (L.) Hoffmanns. & Link. growing wild in northern Sicily and its activity on microorganisms affecting historical art crafts. Arab. J. Chem. 2019, 12, 2704–2712. [Google Scholar] [CrossRef] [Green Version]
- Soković, M.; Vukojević, J.; Marin, P.; Brkić, D.; Vajs, V.; Griensven, L.J.L.D. Chemical composition of essential oils of Thymus and Mentha species and their antifungal activities. Molecules 2009, 14, 238–249. [Google Scholar] [CrossRef]
- Walentowska, J.; Foksowicz-Flaczyk, J. Thyme essential oil for antimicrobial protection of natural textiles. Int. Biodeter. Biodegr. 2013, 84, 407–411. [Google Scholar] [CrossRef]
- Othman, M.; Saada, H.; Matsuda, Y. Antifungal activity of some plant extracts and essential oils against fungi-infested organic archaeological artefacts. Archaemometry 2020, 62, 187–199. [Google Scholar] [CrossRef] [Green Version]
- Radwan, I.A.; Abed, A.H.; Abeer, M.R.; Ibrahim, R.A.; Abdallah, A.S. Effect of thyme, clove and cinnamon essential oils on Candida albicans and moulds isolated from different sources. Am. J. Anim. Vet. Sci. 2014, 9, 303–314. [Google Scholar] [CrossRef] [Green Version]
- Stević, T.; Berić, T.; Šavikin, K.; Soković, M.; Gođevac, D.; Dimkić, I.; Stanković, S. Antifungal activity of selected essential oils against fungi isolated from medicinal plan. Ind. Crop. Prod. 2014, 55, 116–122. [Google Scholar] [CrossRef]
- Širvaitytė, J.; Šiugždaitė, J.; Valeika, V. Application of commercial essential oils of Eucalyptus and Lavender as natural preservative for leather tanning industry. Rev. Chim. 2011, 62, 884–893. [Google Scholar]
- Al-Bayati, F.A. Synergistic antibacterial activity between Thymus vulgaris and Pimpinella anisum essential oils and methanol extracts. J. Ethnopharmacol. 2007, 116, 403–406. [Google Scholar] [CrossRef]
- EL-Hefny, M.; Abo Elgat, W.A.; Al-Huqail, A.A.; Ali, H.M. Essential and Recovery Oils from Matricaria chamomilla Flowers as Environmentally Friendly Fungicides Against Four Fungi Isolated from Cultural Heritage Objects. Processes 2019, 7, 809. [Google Scholar] [CrossRef] [Green Version]
- Mahilrajan, S.; Nandakumar, J.; Kailayalingam, R.; Manoharan, N.A.; SriVijeindran, S. Screening the antifungal activity of essential oils against decay fungi from palmyrah leaf handicrafts. Biol. Res. 2014, 47, 35. [Google Scholar] [CrossRef] [Green Version]
- Pepa, T.D.; Elshafie, H.S.; Capasso, R.; De Feo, V.; Camele, I.; Nazzaro, F.; Scognamiglio, M.R.; Caputo, L. Antimicrobial and Phytotoxic Activity of Origanum heracleoticum and O. majorana Essential Oils Growing in Cilento (Southern Italy). Molecules 2019, 24, 2576. [Google Scholar] [CrossRef] [Green Version]
- Palla, F.; Bruno, M.; Mercurio, F.; Tantillo, A.; Rotolo, V. Essential Oils as Natural Biocides in Conservation of Cultural Heritage. Molecules 2020, 25, 730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chirila, C.; Berechet, M.D.; Deselnicu, V. Thyme essential oil as natural leather preservative against fungi. Int. Conf. Adv. Mater. Syst. 2016, 132268064. [Google Scholar] [CrossRef]
- Deselnicu, V.; Maier, S.S.; Albu, L.; Buruntea, N. Antimicrobial and Antifungal Leathers for Increasing the Health and the Comfort of the Individuals. In Proceedings of the CORTEP 2007, Iasi, Romania, 18–21 October 2007. [Google Scholar]
- Berechet, M.D.; Chirila, C.; Deselnicu, V. Antifungal Activity of Thyme Essential Oil on Woolen Sheepskins. In Proceedings of the 6th International Conference on Advanced Materials and Systems—ICAMS 2016, Bucharest, Romania, 20–23 October 2016; pp. 203–208. [Google Scholar] [CrossRef]
- Niculescu, O.; Leca, M.; Moldovan, Z.; Deselnicu, D.C. Obtaining and characterizing of a product with antifungal properties based on essential oils and natural waxes for finishing natural leathers. Rev. Chim. 2015, 66, 1733–1736. [Google Scholar]
- Niculescu, O.; Gaidau, C.; Simon, D.; Berechet, M.D. The Study on the Possibility of Using Ecological Materials with Antifungal Properties for Treating Natural Leathers. Rev. Chim. 2020, 71, 445–449. [Google Scholar] [CrossRef]
- Marcu, F.; Ilieș, D.C.; Wendt, A.J.; Indrie, L.; Ilieș, A.; Burta, L.; Caciora, T.; Herman, G.V.; Todoran, A.; Baias, S.; et al. Investigations regarding the biodegradation of cultural heritage. Case study of traditional embroidered peasant shirt (Maramures, Romania). Rom. Biotechnol. Lett. 2020, 25, 1362–1368. [Google Scholar] [CrossRef]
- Ilies, A.; Hurley, P.D.; Ilies, D.C.; Baias, S. Tourist animation—A chance adding value to traditional heritage: Case study in the Land of Maramures (Romania). Rev. Etnogr. Si Folc. 2017, 1–2, 131–151. [Google Scholar]
- Ilies, A.; Grama, V. The external western Balkan border of the European Union and its borderland: Premises for building functional transborder territorial systems. Ann. Anal. Za Istrske Mediter. Studije-Ser. Hist. Et Sociol. 2010, 20, 457–468. [Google Scholar]
- Wei, Q.F.; Wang, X.Q.; Mather, R.R.; Fotheringham, A.F. New Approaches to Characterisation of Textile Materials Using Environmental Scanning Electron Microscope. Fibres Text. East. Eur. 2004, 12, 79–83. [Google Scholar]
- Ilieș, D.C.; Indrie, L.; Ilieș, A.; Marcu, F.; Axinte, A.; Burtă, L.; Herman, G.V.; Atasoy, E.; Baidog, A.; Iovan, C.; et al. Investigations of aged textiles using scanning electron microscopy. J. Environ. Biol. 2020, 41, 499–504. [Google Scholar] [CrossRef]
- Dezsi, S.; Rusu, R.; Ilies, M.; Ilies, G.; Badarau, A.S.; Rosian, G. The role of rural tourism in the social and economic revitalisation of Lapus land (Maramures County, Romania). Proc. Pap. Geoconference Ecol. Econ. Educ. Legis. 2014, 2, 783–790. [Google Scholar]
- Deac, L.A.; Gozner, M.; Sambou, A. Ethnographic museums in the rural areas of Crișana region, Romania—keepers of local heritage, tradition and lifestyle. GeoJournal Tour. Geosites 2019, 27, 1251–1260. [Google Scholar] [CrossRef]
- Wendt, J.A.; Ilieş, A.; Wiskulski, T.; Ilieş, M. Wooden orthodox churches in the Maramureş Region—opportunities and threats of tourism. Ekonom. Prob. Tur. 2018, 43, 133–140. [Google Scholar] [CrossRef] [Green Version]
- Indrie, L.; Zlatev, Z.; Ilies, D.C.; Sturza, A.; Dochia, M.; Gozner, M.; Herman, G.; Caciora, T. Implementation of image processing techniques as a tool for form analysis of Romanian folk elements. Ind. Text. 2020, 71, 492–498. [Google Scholar] [CrossRef]
- Adam, K.; Sivropoulu, A.; Kokkini, S.; Lanaras, T.; Arsenakis, M. Antifungal activities of Origanum vulgare subsp. hirtum, Mentha spicata, Lavandula angustifolia and Salvia fruticosa essential oils against human pathogenic fungi. J. Agric. Food Chem. 1998, 46, 1739–1745. [Google Scholar] [CrossRef]
- Daferera, D.J.; Ziogas, B.N.; Polissiou, M.G. The effectiveness of plant essential oils on the growth of Botrytis cinerea, Fusarium sp. and Clavibacter michiganensis subsp. michiganensis. Crop Prot. 2003, 22, 39–44. [Google Scholar] [CrossRef]
- Behmanesh, F.; Pasha, H.; Sefidgar, A.A.; Taghizadeh, M.; Moghadamnia, A.A.; Adib Rad, H.; Shirkhani, L. Antifungal Effect of Lavender Essential Oil (Lavandula angustifolia) and Clotrimazole on Candida albicans: An in Vitro Study. Scientifica 2015, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghoorchibeigi, M.; Larijani, K.; Aberoomand Azar, P.; Zare, K.; Mehregan, I. Chemical composition and radical scavenging activity of Citrus limon peel essential oil Orient. J. Chem. 2017, 33, 458–461. [Google Scholar] [CrossRef] [Green Version]
- Griffin, S.G.; Markham, J.L.; Leach, D.N. An agar dilution method for the determination of the minimum inhibitory concentration of essential oils. J. Essent. Oil Res. 1999, 12, 249–255. [Google Scholar] [CrossRef]
- Lee, T.K.; Nguyen, T.T.H.; Le, T.T.T. Antifungal activity of the tea tree essential oils (Melaleuca alternofolia) against pathogenic fungi. Int. J. Adv. Res. 2019, 7, 1239–1248. [Google Scholar] [CrossRef] [Green Version]
- Rushton, R.T.; Davis, N.W.; Page, J.C.; Durkin, C.A. The effect of tea tree oil extract on the growth of fungi. Low. Extrem. 1997, 4, 113–116. [Google Scholar]
- Nenoff, P.; Haustein, U.F.; Brandt, W. Antifungal activity of the essential oil of Melaleuca alternifolia (tea tree oil) against pathogenic fungi in vitro. Ski. Pharmacol. 1996, 9, 388–394. [Google Scholar] [CrossRef]
- Carson, C.F.; Riley, T.V. Antimicrobial activity of the major components of the essential oil of Melaleuca alternifolia. J. Appl. Bacteriol. 1995, 78, 264–269. [Google Scholar] [CrossRef]
- Procop, G.W.; Church, D.L.; Hall, G.S.; Janda, W.M.; Koneman, E.W.; Schreckenberger, P.C.; Woods, G.L. Koneman’s Color Atlas and Textbook of Diagnostic Microbiology, 7th ed.; Wolters Kluwer: Alpen, The Netherlands, 2016. [Google Scholar]
- Buiuc, D.; Negut, M. Tratat de Microbiologie Clinică, 3rd ed.; Editura Medicală: Bucuresti, Romania, 2009. [Google Scholar]
- Sil, A.; Pramanik, K.; Samantaray, P.; Firoz, M.; Yadav, V. Essential oils: A boon towards eco-friendly management of phytopathogenic fungi. J. Entomol. Zool. Stud. 2020, 8, 1884–1891. [Google Scholar]
- Bielak, E.; Marcinkowska, E.; Sygula-Cholewinska, J. The Durability of Antimicrobial Effect of Leathers Finished with Oregano Oil. J. Am. Leather Chem. Assoc. 2017, 112, 377–386. [Google Scholar]
- Özcan, M.M.; Starovic, M.; Aleksic, G.; Figueredo, G.; Juhaimi, F.A.; Chalchat, J.-C. Chemical Composition and Antifungal Activity of Lavender (Lavandula stoechas) Oil. Nat. Prod. Commun. 2018, 13, 895–898. [Google Scholar] [CrossRef] [Green Version]
- Smigielski, K.; Prusinowska, R.; Stobiecka, A.; Kunicka-Styczyñska, A.; Gruska, R. Biological Properties and Chemical Composition of Essential Oils from Flowers and Aerial Parts of Lavender (Lavandula angustifolia). J. Essent. Oil Bear. Plants 2018, 21, 1303–1314. [Google Scholar] [CrossRef]
- Bazaz, R.; Denning, D.W. Aspergillosis: Causes, types and treatment. Pharm. J. 2019, 303, 7927. [Google Scholar] [CrossRef]
- Paul, D.; Paul, K. Aspergillosis: An overview. IJPSR 2018, 9, 5032–5049. [Google Scholar] [CrossRef]
- Pop, O.L.; Judea Pusta, C.T.J.; Buhas, C.L.; Judea, A.S.; Huniadi, A.; Jurca, C.; Sandor, M.; Negrutiu, B.M.; Buhas, B.A.; Nikin, Z.; et al. Anaplastic Lymphoma Kinase (ALK) Overexpression in Lung Cancer Biopsies—An 18 month study in north western Romania. Rev. Chim. 2019, 70, 2690–2693. [Google Scholar] [CrossRef]
- Girmenia, C.; Pizzarelli, G.; Cristini, F.; Barchiesi, F.; Spreghini, E.; Scalise, G.; Martino, P. Candida guilliermondii Fungemia in Patients with Hematologic Malignancies. J. Clin. Microbiol. 2006, 44, 2458–2464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katotomichelakis, M.; Nikolaidis, C.; Makris, M.; Proimos, E.; Constantinidis, T.C.; Papadakis, C.E.; Danielides, V. Alternaria and Cladosporium calendar of Western Thrace: Relationship with allergic rhinitis symptoms. Laryngoscope 2016, 126, E51–E56. [Google Scholar] [CrossRef]
- Sandoval-Denis, M.; Sutton, D.A.; Martin-Vicente, A.; Cano-Lira, J.F.; Wiederhold, N.; Guarro, J.; Genéa, J. Cladosporium Species Recovered from Clinical Samples in the United States. J. Clin. Microbiol. 2015, 53, 2990–3000. [Google Scholar] [CrossRef] [Green Version]
- Huniadi, A.; Sorian, A.; Maghiar, A.; Mocuta, D.; Antal, L.; Pop, O.L.; Judea Pusta, C.T.; Buhas, C.L.; Pascalau, A.; Sandor, M. 6 (2, 3-Dichlorodiphenyl)-1, 2, 4-Triazine-3, 5-Diamine Use in Pregnancy and Body Stalk Anomaly—A Possible Association? Rev. Chim. 2019, 7, 2656–2659. [Google Scholar] [CrossRef]
- Visagie, C.M.; Hirooka, Y.; Tanney, J.B.; Whitfield, E.; Mwange, K.; Meijer, M.; Amend, A.S.; Seifert, K.A.; Samson, R.A. Aspergillus, Penicillium and Talaromyces isolated from house dust samples collected around the world. Stud. Mycol. 2014, 78, 63–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Y.; Zhang, J.; Li, X.; Yang, Y.; Zhang, Y.; Ma, J.; Xi, L. Penicillium marneffei Infection: An Emerging Disease in Mainland China. Mycopathologia 2013, 175, 57–67. [Google Scholar] [CrossRef] [PubMed]
Examined Area (Figure 2) | Applied Essential Oil | Material Type |
---|---|---|
A | Lavandula angustifolia (lavender) | Cotton yarn |
B | Citrus limon (limon) | Leather-cotton yarn mix |
C | Mentha piperita (mint) | Leather |
D | Melaleuca alternifolia (tea tree) | Wool |
E | Marjoram (marjoram) | Cotton yarn |
F | Origanum vulgare (oregano) | Pearly beads |
Microscopic Image | Genus Name | The Examined Area of the Sheepskin Coat from Which It Was Isolated (Figure 2) | Applied Essential Oils—Effect |
---|---|---|---|
Alternaria sp. | Area E | Marjoram—inhibitory | |
Aspergillus sp. | Area E | Marjoram—inhibitory | |
Botrytis sp. | Area A | Lavandula angustifolia—inhibitory | |
Area B | Citrus limon—inhibitory | ||
Area C | Mentha piperita—inhibitory | ||
Area E | Marjoram—inhibitory | ||
Candida guilliermondii Profile API: 6702377 | Area D | Melaleuca alternifolia—inhibitory | |
Cladosporium sp. | Area F | Origanum vulgare—inhibitory | |
Mucor sp. | Area D | Melaleuca alternifolia—inhibitory | |
Penicillium sp. | Area D | Melaleuca alternifolia—inhibitory | |
Area F | Origanum vulgare—inhibitory |
Samples Taken | Examined Area | Essential Oil | Fungal Colony Growth |
---|---|---|---|
30 min after application of the essential oils | Area A | Lavandula angustifolia | Absent |
Area B | Citrus limon | Absent | |
Area C | Mentha piperita | Absent | |
Area D | Melaleuca alternifolia | Mucor sp. | |
Area E | Marjoram | Absent | |
Area F | Origanum vulgare | Botrytis sp. | |
24 h after the application of the essential oils | Area A | Lavandula angustifolia | Absent |
Area B | Citrus limon | Absent | |
Area C | Mentha piperita | Absent | |
Area D | Melaleuca alternifolia | Mucor sp. | |
Area E | Marjoram | Absent | |
Area F | Origanum vulgare | Botrytis sp. | |
48 h after the application of the essential oils | Area A | Lavandula angustifolia | Botrytis sp. |
Area B | Citrus limon | Absent | |
Area C | Mentha piperita | Absent | |
Area D | Melaleuca alternifolia | Cladosporium sp. | |
Area E | Marjoram | Botrytis sp. | |
Area F | Origanum vulgare | Cladosporium sp. Botrytis sp. |
Essential Oil Used | Inhibited Fungal Species | Duration of the Inhibitory Effect from the Moment of Application |
---|---|---|
Lavandula angustifolia | Botrytis sp. | Up to 22 days |
Citrus limon | Botrytis sp. | Minimum of 32 days |
Mentha piperita | Botrytis sp. | Minimum of 32 days |
Melaleuca alternifolia | Candida guilliermondii | Minimum of 32 days |
Mucor sp. | Up to 22 days | |
Penicillium sp. | Minimum of 30 days | |
Marjoram | Alternaria sp. | Minimum of 30 days |
Aspergillus sp. | Minimum of 30 days | |
Botrytis sp. | Up to 22 days | |
Origanum vulgare | Cladosporium sp. | Minimum of 30 days |
Botrytis sp. Penicillium sp. | Up to 22 days Minimum of 30 days |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilieș, D.C.; Hodor, N.; Indrie, L.; Dejeu, P.; Ilieș, A.; Albu, A.; Caciora, T.; Ilieș, M.; Barbu-Tudoran, L.; Grama, V. Investigations of the Surface of Heritage Objects and Green Bioremediation: Case Study of Artefacts from Maramureş, Romania. Appl. Sci. 2021, 11, 6643. https://doi.org/10.3390/app11146643
Ilieș DC, Hodor N, Indrie L, Dejeu P, Ilieș A, Albu A, Caciora T, Ilieș M, Barbu-Tudoran L, Grama V. Investigations of the Surface of Heritage Objects and Green Bioremediation: Case Study of Artefacts from Maramureş, Romania. Applied Sciences. 2021; 11(14):6643. https://doi.org/10.3390/app11146643
Chicago/Turabian StyleIlieș, Dorina Camelia, Nicolaie Hodor, Liliana Indrie, Paula Dejeu, Alexandru Ilieș, Adina Albu, Tudor Caciora, Marin Ilieș, Lucian Barbu-Tudoran, and Vasile Grama. 2021. "Investigations of the Surface of Heritage Objects and Green Bioremediation: Case Study of Artefacts from Maramureş, Romania" Applied Sciences 11, no. 14: 6643. https://doi.org/10.3390/app11146643
APA StyleIlieș, D. C., Hodor, N., Indrie, L., Dejeu, P., Ilieș, A., Albu, A., Caciora, T., Ilieș, M., Barbu-Tudoran, L., & Grama, V. (2021). Investigations of the Surface of Heritage Objects and Green Bioremediation: Case Study of Artefacts from Maramureş, Romania. Applied Sciences, 11(14), 6643. https://doi.org/10.3390/app11146643