Effect of African Catfish Mucilage Concentration on Stability of Nanoemulsion Using D-Optimal Mixture Design
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection and Preservation of African Catfish Mucilage
2.2. Experimental Design
2.3. African Catfish Mucilage Stabilized O/W-Type Nanoemulsion Formulation
2.4. Particle Size Measurements
2.5. Cryogenic-Transmission Electron Microscopy and Particle Size Analysis
2.6. Data Optimization and Statistical Analysis
3. Results and Discussions
3.1. Stability of ACM Stabilized O/W-Type Nanoemulsion
3.2. Model Fit and Adequacy for the Stability of ACM Stabilized O/W-Type Nanoemulsion
3.3. Effects of Mixture Components on Stability as a Function of Sauter Mean Diameter of ACM Stabilized O/W-Type Nanoemulsion
3.4. Effects of Process Optimization for Stability of ACM Stabilized O/W-Type Nanoemulsion
3.5. Optimization of Response
3.6. Structural Characteristics of O/W-Type Nanoemulsion Formulation
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Glowka, E.; Stasiak, J.; Lulek, J. Drug delivery systems for vitamin D supplementation and therapy. Pharmaceutics 2019, 11, 347. [Google Scholar] [CrossRef] [Green Version]
- McClements, D.J.; Jafari, S.M. Improving emulsion formation, stability and performance using mixed emulsifiers: A review. Adv. Colloid Interface Sci. 2018, 251, 55–79. [Google Scholar] [CrossRef]
- Doost, A.S.; Nasrabadi, M.N.; Kassozi, V.; Nakisozi, H.; Van der Meeren, P. Recent advances in food colloidal delivery systems for essential oils and their main components. Trends Food Sci. Technol. 2020, 99, 474–486. [Google Scholar] [CrossRef] [Green Version]
- Sarheed, O.; Shouqair, D.; Ramesh, K.; Khaleel, T.; Amin, M.; Boateng, J.; Drechsler, M. Formation of stable nanoemulsions by ultrasound-assisted two-step emulsification process for topical drug delivery: Effect of oil phase composition and surfactant concentration and loratadine as ripening inhibitor. Int. J. Pharm. 2020, 576, 118952. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Sun, Q.; McClements, D.J. Enhancing the formation and stability of emulsions using mixed natural emulsifiers: Hydrolyzed rice glutelin and quillaja saponin. Food Hydrocoll. 2019, 89, 396–405. [Google Scholar] [CrossRef]
- Bai, L.; Huan, S.; Li, Z.; McClements, D.J. Comparison of emulsifying properties of food-grade polysaccharides in oil-in-water emulsions: Gum arabic, beet pectin, and corn fiber gum. Food Hydrocoll. 2017, 66, 144–153. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, C.D.; Nunes, I.L. Oil nanoencapsulation: Development, application, and incorporation into the food market. Nanoscale Res. Lett. 2019, 14, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maphosa, Y.; Jideani, V.A.; Adeyi, O. Effect of soluble dietary fibres from Bambara groundnut varieties on the stability of orange oil beverage emulsion. Afr. J. Sci. Technol. Innov. Dev. 2017, 9, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Focsan, A.L.; Polyakov, N.E.; Kispert, L.D. Supramolecular Carotenoid Complexes of Enhanced Solubility and Stability—The Way of Bioavailability Improvement. Molecules 2019, 24, 3947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leong, T.S.; Martin, G.J.; Ashokkumar, M. Ultrasonic encapsulation–a review. Ultrason. Sonochem. 2017, 35, 605–614. [Google Scholar] [CrossRef]
- Krasulya, O.; Bogush, V.; Trishina, V.; Potoroko, I.; Khmelev, S.; Sivashanmugam, P.; Anandan, S. Impact of acoustic cavitation on food emulsions. Ultrason. Sonochem. 2016, 30, 98–102. [Google Scholar] [CrossRef]
- Tiong, T.J.; Chu, J.K.; Lim, L.Y.; Tan, K.W.; Yap, Y.H.; Asli, U.A. A computational and experimental study on acoustic pressure for ultrasonically formed oil-in-water emulsion. Ultrason. Sonochem. 2019, 56, 46–54. [Google Scholar] [CrossRef]
- Trujillo-Cayado, L.A.; Santos, J.; Calero, N.; Alfaro, M.d.C.; Muñoz, J. Influence of the Homogenization Pressure on the Rheology of Biopolymer-Stabilized Emulsions Formulated with Thyme Oil. Fluids 2019, 4, 29. [Google Scholar] [CrossRef] [Green Version]
- Kale, S.N.; Deore, S.L. Emulsion micro emulsion and nano emulsion: A review. Syst. Rev. Pharm. 2017, 8, 39. [Google Scholar] [CrossRef] [Green Version]
- Muschiolik, G.; Dickinson, E. Double emulsions relevant to food systems: Preparation, stability, and applications. Compr. Rev. Food Sci. Food Saf. 2017, 16, 532–555. [Google Scholar] [CrossRef] [Green Version]
- Patil, L.; Gogate, P.R. Ultrasound assisted synthesis of stable oil in milk emulsion: Study of operating parameters and scale-up aspects. Ultrason. Sonochem. 2018, 40, 135–146. [Google Scholar] [CrossRef]
- Zou, Y.; Yang, X.; Scholten, E. Tuning particle properties to control rheological behavior of high internal phase emulsion gels stabilized by zein/tannic acid complex particles. Food Hydrocoll. 2019, 89, 163–170. [Google Scholar] [CrossRef]
- Adeyi, O.; Ikhu-Omoregbe, D.; Jideani, V. Emulsion stability and steady shear characteristics of concentrated oil-in-water emulsion stabilized by gelatinized bambara groundnut flour. Asian J. Chem. 2014, 26, 4995–5002. [Google Scholar] [CrossRef]
- Oluwole, A.J.O.; Ikhu-Omoregbe, D.I.; Jideani, V.A. Physicochemical Properties of African Catfish Mucus and Its Effect on the Stability of Soya Milk Emulsions. Appl. Sci. 2020, 10, 916. [Google Scholar] [CrossRef] [Green Version]
- Yolmeh, M.; Jafari, S.M. Applications of response surface methodology in the food industry processes. Food Bioprocess Technol. 2017, 10, 413–433. [Google Scholar] [CrossRef]
- Ikrang, E.G.; Umani, K.C. Optimization of process conditions for drying of catfish (Clarias gariepinus) using Response Surface Methodology (RSM). Food Sci. Hum. Wellness 2019, 8, 46–52. [Google Scholar] [CrossRef]
- Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C.M. Response Surface Methodology: Process and Product Optimization Using Designed Experiments; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Montgomery, D.C. Design and Analysis of Experiments; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Guardiola, F.; Porcino, C.; Cerezuela, R.; Cuesta, A.; Faggio, C.; Esteban, M. Impact of date palm fruits extracts and probiotic enriched diet on antioxidant status, innate immune response and immune-related gene expression of European seabass (Dicentrarchus labrax). Fish Shellfish. Immunol. 2016, 52, 298–308. [Google Scholar] [CrossRef]
- Habib, B.A.; AbouGhaly, M.H. Combined mixture-process variable approach: A suitable statistical tool for nanovesicular systems optimization. Expert Opin. Drug Deliv. 2016, 13, 777–788. [Google Scholar] [CrossRef] [PubMed]
- Samson, S.; Basri, M.; Masoumi, H.R.F.; Karjiban, R.A.; Malek, E.A. Design and development of a nanoemulsion system containing copper peptide by D-optimal mixture design and evaluation of its physicochemical properties. RSC Adv. 2016, 6, 17845–17856. [Google Scholar] [CrossRef]
- Asmawi, A.A.; Salim, N.; Abdulmalek, E.; Abdul Rahman, M.B. Modeling the Effect of Composition on Formation of Aerosolized Nanoemulsion System Encapsulating Docetaxel and Curcumin Using D-Optimal Mixture Experimental Design. Int. J. Mol. Sci. 2020, 21, 4357. [Google Scholar] [CrossRef] [PubMed]
- Dash, S.; Das, S.; Samal, J.; Thatoi, H. Epidermal mucus, a major determinant in fish health: A review. Iran. J. Vet. Res. 2018, 19, 72. [Google Scholar] [PubMed]
- Reverter, M.; Tapissier-Bontemps, N.; Lecchini, D.; Banaigs, B.; Sasal, P. Biological and ecological roles of external fish mucus: A review. Fishes 2018, 3, 41. [Google Scholar] [CrossRef] [Green Version]
- Guardiola, F.A.; Cuartero, M.; del Mar Collado-González, M.; Baños, F.G.D.; Cuesta, A.; Moriñigo, M.Á.; Esteban, M.Á. Terminal carbohydrates abundance, immune related enzymes, bactericidal activity and physico-chemical parameters of the Senegalese sole (Solea senegalensis, Kaup) skin mucus. Fish Shellfish. Immunol. 2017, 60, 483–491. [Google Scholar] [CrossRef]
- Bansil, R.; Turner, B.S. The biology of mucus: Composition, synthesis and organization. Adv. Drug Deliv. Rev. 2018, 124, 3–15. [Google Scholar] [CrossRef]
- Tang, J.; Sun, Y.; Han, Z.; Shi, W. An illustration of optimal selected glycosidase for N-glycoproteins deglycosylation and crystallization. Int. J. Biol. Macromol. 2019, 122, 265–271. [Google Scholar] [CrossRef]
- Edwards, S.E.; Flynn, S.; Hobson, J.J.; Chambon, P.; Cauldbeck, H.; Rannard, S.P. Mucus-responsive functionalized emulsions: Design, synthesis and study of novel branched polymers as functional emulsifiers. RSC Adv. 2020, 10, 30463–30475. [Google Scholar] [CrossRef]
- Böni, L.; Rühs, P.A.; Windhab, E.J.; Fischer, P.; Kuster, S. Gelation of soy milk with hagfish exudate creates a flocculated and fibrous emulsion-and particle gel. PLoS ONE 2016, 11, e0147022. [Google Scholar] [CrossRef] [Green Version]
- Kouhi, M.; Prabhakaran, M.P.; Ramakrishna, S. Edible polymers: An insight into its application in food, biomedicine and cosmetics. Trends Food Sci. Technol. 2020, 103, 248–263. [Google Scholar] [CrossRef]
- Hamed, R.; AbuRezeq, A.a.; Tarawneh, O. Development of hydrogels, oleogels, and bigels as local drug delivery systems for periodontitis. Drug Dev. Ind. Pharm. 2018, 44, 1488–1497. [Google Scholar] [CrossRef] [PubMed]
- Osmałek, T.; Froelich, A.; Jadach, B.; Tatarek, A.; Gadziński, P.; Falana, A.; Gralińska, K.; Ekert, M.; Puri, V.; Wrotyńska-Barczyńska, J. Recent Advances in Polymer-Based Vaginal Drug Delivery Systems. Pharmaceutics 2021, 13, 884. [Google Scholar] [CrossRef] [PubMed]
- Akunne, T.C.; Okafor, S.N.; Okechukwu, D.C.; Nwankwor, S.S.; Emene, J.O.; Okoro, B.N. Catfish (Clarias gariepinus) slime coat possesses antimicrobial and wound healing activities. Pharm. Biosci. J. 2016, 81–87. [Google Scholar] [CrossRef]
- Lamriben, L.; Graham, J.B.; Adams, B.M.; Hebert, D.N. N-Glycan-based ER molecular chaperone and protein quality control system: The Calnexin Binding Cycle. Traffic 2016, 17, 308–326. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.; Zhong, G.; Cai, C.; Chen, C.; Chen, X. Rapid and efficient separation of glycoprotein using pH double-responsive imprinted magnetic microsphere. Talanta 2017, 169, 98–103. [Google Scholar] [CrossRef]
- Dunbar, G.; Higa, J.; Jones, T.; Kaminski, B.; Panicker, S. Guidelines for ethical conduct in the care and use of nonhuman animals in research. In American Psychological Association Committee on Animal Rights Research and Ethics 2010–2011; American Psychological Association: Washington, DC, USA, 20 July 2012. [Google Scholar]
- Bennett, R.H.; Ellender, B.R.; Mäkinen, T.; Miya, T.; Pattrick, P.; Wasserman, R.J.; Woodford, D.J.; Weyl, O.L. Ethical considerations for field research on fishes. Koedoe 2016, 58, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Böni, L.; Fischer, P.; Böcker, L.; Kuster, S.; Rühs, P.A. Hagfish slime and mucin flow properties and their implications for defense. Sci. Rep. 2016, 6, 1–8. [Google Scholar] [CrossRef]
- Bernards, M.A.; Oke, I.; Heyland, A.; Fudge, D.S. Spontaneous unraveling of hagfish slime thread skeins is mediated by a seawater-soluble protein adhesive. J. Exp. Biol. 2014, 217, 1263–1268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Djuris, J.; Vasiljevic, D.; Jokic, S.; Ibric, S. Application of D-optimal experimental design method to optimize the formulation of O/W cosmetic emulsions. Int. J. Cosmet. Sci. 2014, 36, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Radfar, R.; Hosseini, H.; Farhodi, M.; Ghasemi, I.; Średnicka-Tober, D.; Shamloo, E.; Khaneghah, A.M. Optimization of antibacterial and mechanical properties of an active LDPE/starch/nanoclay nanocomposite film incorporated with date palm seed extract using D-optimal mixture design approach. Int. J. Biol. Macromol. 2020, 158, 790–799. [Google Scholar] [CrossRef]
- de Lourdes Pérez-González, M.L.; González-de la Rosa, C.H.; Pérez-Hernández, G.; Beltrán, H.I. Nanostructured oleic acid/polysorbate 80 emulsions with diminished toxicity in NL-20 cell line: Insights of potential drug carriers. Colloids Surf. B Biointerfaces 2020, 187, 110758. [Google Scholar] [CrossRef]
- Acevedo-Estupiñan, M.V.; Gutierrez-Lopez, G.F.; Cano-Sarmiento, C.; Parra-Escudero, C.O.; Rodriguez-Estrada, M.T.; Garcia-Varela, R.; García, H.S. Stability and characterization of O/W free phytosterols nanoemulsions formulated with an enzymatically modified emulsifier. LWT 2019, 107, 151–157. [Google Scholar] [CrossRef]
- Nieto de Castro, C.A.; Vieira, S.I.; Lourenço, M.J.; Murshed, S. Understanding Stability, Measurements, and Mechanisms of Thermal Conductivity of Nanofluids. J. Nanofluids 2017, 6, 804–811. [Google Scholar] [CrossRef]
- Dokić, L.; Krstonošić, V.; Nikolić, I. Physicochemical characteristics and stability of oil-in-water emulsions stabilized by OSA starch. Food Hydrocoll. 2012, 29, 185–192. [Google Scholar] [CrossRef]
- Yeom, D.W.; Song, Y.S.; Kim, S.R.; Lee, S.G.; Kang, M.H.; Lee, S.; Choi, Y.W. Development and optimization of a self-microemulsifying drug delivery system for ator vastatin calcium by using D-optimal mixture design. Int. J. Nanomed. 2015, 10, 3865. [Google Scholar]
- Yadav, N.; Nanda, S.; Sharma, G.; Katare, O. Systematically optimized ketoprofen-loaded novel proniosomal formulation for periodontitis: In vitro characterization and in vivo pharmacodynamic evaluation. AAPS PharmSciTech 2017, 18, 1863–1880. [Google Scholar] [CrossRef] [PubMed]
- Nejadmansouri, M.; Hosseini, S.M.H.; Niakosari, M.; Yousefi, G.H.; Golmakani, M.T. Physicochemical properties and oxidative stability of fish oil nanoemulsions as affected by hydrophilic lipophilic balance, surfactant to oil ratio and storage temperature. Colloids Surf. A Physicochem. Eng. Asp. 2016, 506, 821–832. [Google Scholar] [CrossRef]
- McClements, D.J. Food Emulsions: Principles, Practices, and Techniques; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Jin, J.; Ooi, C.H.; Dao, D.V.; Nguyen, N.-T. Coalescence processes of droplets and liquid marbles. Micromachines 2017, 8, 336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diedericks, C.F.; Jideani, V.A. Physicochemical and functional properties of insoluble dietary fiber isolated from bambara groundnut (Vigna subterranea [L.] Verdc.). J. Food Sci. 2015, 80, C1933–C1944. [Google Scholar] [CrossRef]
- Gharehbeglou, P.; Jafari, S.M.; Hamishekar, H.; Homayouni, A.; Mirzaei, H. Pectin-whey protein complexes vs. small molecule surfactants for stabilization of double nano-emulsions as novel bioactive delivery systems. J. Food Eng. 2019, 245, 139–148. [Google Scholar] [CrossRef]
- Gupta, A.; Eral, H.B.; Hatton, T.A.; Doyle, P.S. Nanoemulsions: Formation, properties and applications. Soft Matter 2016, 12, 2826–2841. [Google Scholar] [CrossRef] [Green Version]
- Anupam, K.; Swaroop, V.; Lal, P.S. Antagonistic, synergistic and interaction effects of process parameters during oxygen delignification of Melia dubia kraft pulp. J. Clean. Prod. 2018, 199, 420–430. [Google Scholar] [CrossRef]
- Mozafarpour, R.; Koocheki, A.; Milani, E.; Varidi, M. Extruded soy protein as a novel emulsifier: Structure, interfacial activity and emulsifying property. Food Hydrocoll. 2019, 93, 361–373. [Google Scholar] [CrossRef]
- Sałek, K.; Euston, S.R. Sustainable microbial biosurfactants and bioemulsifiers for commercial exploitation. Process. Biochem. 2019, 85, 143–155. [Google Scholar] [CrossRef]
- Huang, L.; Liu, J.; Addy, M.; Ding, B.; Cheng, Y.; Peng, P.; Wang, Y.; Liu, Y.; Chen, P.; Ruan, R. Physicochemical and emulsifying properties of orange fibers stabilized oil-in-water emulsions. LWT 2020, 133, 110054. [Google Scholar] [CrossRef]
Independent Variable | Dependent Variable | |||
---|---|---|---|---|
Formulation/Run | A: ACM b (%) | B: Oil b (%) | C: Water b (%) | D(3,2) b |
1 | 1.0 | 9.6 | 89.4 | 31.9 ± 0.6 a |
2 | 1.0 | 9.6 | 89.4 | 32.4 ± 0.6 a |
3 | 1.0 | 3.0 | 96.0 | 10.2 ± 0.3 a |
4 | 5.0 | 7.3 | 87.7 | 7.0 ± 0.2 a |
5 | 1.0 | 5.7 | 93.3 | 23.2 ± 0.6 a |
6 | 5.0 | 3.0 | 92.0 | 6.7 ± 0.1 a |
7 | 5.0 | 3.0 | 92.0 | 6.6 ± 0.1 a |
8 | 5.0 | 10 | 85.0 | 7.4 ± 0.2 a |
9 | 2.3 | 10 | 87.7 | 15.4 ± 0.4 a |
10 | 1.0 | 3.0 | 96.0 | 10.4 ± 0.4 a |
11 | 2.9 | 3.1 | 93.9 | 15.9 ± 0.5 a |
12 | 3.3 | 6.2 | 90.5 | 13.8 ± 0.4 a |
13 | 5.0 | 10.0 | 85.0 | 7.4 ± 0.2 a |
14 | 1.0 | 8.0 | 91.0 | 29.1 ± 0.5 a |
15 | 5.0 | 4.6 | 90.4 | 7.0 ± 0.2 a |
16 | 3.3 | 6.2 | 91.0 | 13.6 ± 0.4 a |
Source | Sum of Squares | df | Mean Square | F Value | p-Value Prob > F | Significance Level |
---|---|---|---|---|---|---|
Model | 1178.55 | 5 | 235.71 | 1805.99 | <0.0001 | Significant |
1L | 909.19 | 2 | 454.6 | 3483.07 | <0.0001 | |
AB | 32.44 | 1 | 32.44 | 248.53 | <0.0001 | |
AC | 11.06 | 1 | 11.06 | 84.76 | <0.0001 | |
BC | 26.97 | 1 | 26.97 | 206.65 | <0.0001 | |
Residual | 0.91 | 7 | 0.13 | |||
Lack of fit | 0.34 | 2 | 0.17 | 1.49 | 0.3104 | Not significant |
Pure error | 0.57 | 5 | 0.11 | |||
Cor total | 1179.46 | 12 | ||||
R-squared | 0.9992 | |||||
Adjusted R-squared | 0.9987 | |||||
Predicted R-squared | 0.9977 | |||||
Adequate precision | 104.158 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oluwole, A.O.; Ikhu-Omoregbe, D.I.; Jideani, V.A.; Ntwampe, S.K. Effect of African Catfish Mucilage Concentration on Stability of Nanoemulsion Using D-Optimal Mixture Design. Appl. Sci. 2021, 11, 6672. https://doi.org/10.3390/app11156672
Oluwole AO, Ikhu-Omoregbe DI, Jideani VA, Ntwampe SK. Effect of African Catfish Mucilage Concentration on Stability of Nanoemulsion Using D-Optimal Mixture Design. Applied Sciences. 2021; 11(15):6672. https://doi.org/10.3390/app11156672
Chicago/Turabian StyleOluwole, Adebanji Olasupo, Daniel Imwansi Ikhu-Omoregbe, Victoria Adaora Jideani, and Seteno Karabo Ntwampe. 2021. "Effect of African Catfish Mucilage Concentration on Stability of Nanoemulsion Using D-Optimal Mixture Design" Applied Sciences 11, no. 15: 6672. https://doi.org/10.3390/app11156672
APA StyleOluwole, A. O., Ikhu-Omoregbe, D. I., Jideani, V. A., & Ntwampe, S. K. (2021). Effect of African Catfish Mucilage Concentration on Stability of Nanoemulsion Using D-Optimal Mixture Design. Applied Sciences, 11(15), 6672. https://doi.org/10.3390/app11156672