Topology Optimization Design and Experimental Research of a 3D-Printed Metal Aerospace Bracket Considering Fatigue Performance
Abstract
:1. Introduction
2. The Design Requirement of the Aerospace Bracket
3. Topology Optimization Model Considering Fatigue Characteristics
3.1. Multiple Load Case Model Considering Fatigue Characteristics
3.2. Topology Optimization Model Formulation
3.3. Sensitivity Analysis
3.4. Solving Strategy
4. Numerical Result and Geometric Reconstruction
4.1. Numerical Result
4.2. Geometry Reconstruction
5. Fatigue Test Procedure and Result
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gu, D.D.; Meiners, W.; Wissenbach, K.; Poprawe, R. Laser Additive Manufacturing of Metallic Components: Materials, Processes and Mechanisms. Int. Mater. Rev. 2013, 57, 133–164. [Google Scholar] [CrossRef]
- Bendsøe, M.P.; Sigmund, O. Topology Optimization—Theory, Methods, and Applications; Springer Verlag: Berlin/Heidelberg, Germany, 2003; ISBN 978-3-642-07698-5. [Google Scholar]
- Shi, G.; Guan, C.; Quan, D.; Wu, D.; Tang, L.; Gao, T. An Aerospace Bracket Designed by Thermo-Elastic Topology Optimization and Manufactured by Additive Manufacturing. Chin. J. Aeronaut. 2020, 33, 1252–1259. [Google Scholar] [CrossRef]
- Jihong, Z.; Fei, H.; Weihong, Z. Key Optimization Design Issues for Achieving Additively Manufactured Aircraft and Aerospace Structures. Aeronaut. Manuf. Technol. 2017, 5, 16–21. [Google Scholar] [CrossRef]
- Dbouk, T. A Review about the Engineering Design of Optimal Heat Transfer Systems Using Topology Optimization. Appl. Therm. Eng. 2017, 112, 841–854. [Google Scholar] [CrossRef]
- Beghini, L.L.; Beghini, A.; Katz, N.; Baker, W.F.; Paulino, G.H. Connecting Architecture and Engineering through Structural Topology Optimization. Eng. Struct. 2014, 59, 716–726. [Google Scholar] [CrossRef]
- Tomlin, M.; Meyer, J. Topology Optimization of an Additive Layer Manufactured (Alm) Aerospace Part. In Proceedings of the 7th Altair CAE Technology Conference, Warwickshire, UK, 10 May 2011. [Google Scholar]
- Liang, M.; Weihong, Z.; Dongliang, Q.; Guanghui, S.; Lei, T.; Yuliang, H.; Piotr, B.; Jihong, Z.; Tong, G. From Topology Optimization Design to Additive Manufacturing: Today’s Success and Tomorrow’s Roadmap. Arch. Comput. Methods Eng. 2020, 27, 805–830. [Google Scholar] [CrossRef]
- Jihong, Z.; Han, Z.; Chuang, W.; Lu, Z.; Shangqin, Y.; Weihong, Z. Status and Future of Topology Optimization for Additive Manufacturing. Aeronaut. Manuf. Technol. 2020, 63, 24–38. [Google Scholar] [CrossRef]
- Eschenauer, H.A.; Olhoff, N. Topology Optimization of Continuum Structures: A Review. Appl. Mech. Rev. 2001, 54, 331–390. [Google Scholar] [CrossRef]
- Sigmund, O.; Maute, K. Topology Optimization Approaches. Struct. Multidiscip. Optim. 2013, 48, 1031–1055. [Google Scholar] [CrossRef]
- Rozvany, G.I. A Critical Review of Established Methods of Structural Topology Optimization. Struct. Multidiscip. Optim. 2009, 37, 217–237. [Google Scholar] [CrossRef]
- Jie, H.; Jihong, Z.; Chuang, W.; Jie, W.; Weihong, Z. Topology Optimization of the Multi-Fasteners Jointed Structure Considering Joint Load Constraint and Fatigue Constraints. Chin. Sci. Bull. 2018, 64, 79–86. [Google Scholar] [CrossRef] [Green Version]
- Shanglong, Z.; Chau, L.; Arun, L.G.; Julián, A.N. Fatigue-Based Topology Optimization with Non-Proportional Loads. Comput. Methods Appl. Mech. Eng. 2019, 345, 805–825. [Google Scholar] [CrossRef]
- Desmorat, B.; Desmorat, R. Topology Optimization in Damage Governed Low Cycle Fatigue. Comptes Rendus Mec. 2008, 336, 448–453. [Google Scholar] [CrossRef]
- Collet, M.; Bruggi, M.; Duysinx, P. Topology Optimization for Minimum Weight with Compliance and Simplified Nominal Stress Constraints for Fatigue Resistance. Struct. Multidiscip. Optim. 2017, 55, 839–855. [Google Scholar] [CrossRef] [Green Version]
- Holmberg, E.; Torstenfelt, B.; Klarbring, A. Fatigue Constrained Topology Optimization. Struct. Multidiscip. Optim. 2014, 50, 207–219. [Google Scholar] [CrossRef] [Green Version]
- Nabaki, K.; Shen, J.; Huang, X. Evolutionary Topology Optimization of Continuum Structures Considering Fatigue Failure. Mater. Des. 2019, 166, 107586. [Google Scholar] [CrossRef]
- Olhoff, N.; Du, J. Topological Design for Minimum Dynamic Compliance of Structures under Forced Vibration. Topol. Optim. Struct. Contin. Mech. 2014, 325–339. [Google Scholar] [CrossRef]
- Tortorelli, D.A.; Michaleris, P. Design Sensitivity Analysis: Overview and Review. Inverse Problems Eng. 1994, 1, 71–105. [Google Scholar] [CrossRef]
- Sigmund, O.; Maute, K. Sensitivity Filtering from a Continuum Mechanics Perspective. Struct. Multidiscip. Optim. 2012, 46, 471–475. [Google Scholar] [CrossRef]
- Svanberg, K. The Method of Moving Asymptotes—A New Method for Structural Optimization. Int. J. Numer. Methods Eng. 1987, 24, 359–373. [Google Scholar] [CrossRef]
- Beretta, S.; Romano, S. A Comparison of Fatigue Strength Sensitivity to Defects for Materials Manufactured by Am or Traditional Processes. Int. J. Fatigue 2017, 94, 178–191. [Google Scholar] [CrossRef]
- Janeček, M.; Nový, F.; Harcuba, P.; Stráský, J.; Trško, L.; Mhaede, M.; Wagner, L. The Very High Cycle Fatigue Behaviour of Ti-6Al-4V Alloy. Acta Phys. Pol. A. 2015, 128, 497–503. [Google Scholar] [CrossRef]
- Edwards, P.; Ramulu, M. Fatigue Performance Evaluation of Selective Laser Melted Ti–6Al–4V. Mater. Sci. Eng. A 2014, 598, 327–337. [Google Scholar] [CrossRef]
Elements | Impurity Elements, Max | ||||||||
---|---|---|---|---|---|---|---|---|---|
Al | V | Ti | Fe | C | N | H | O | Other Elements | |
Each | All | ||||||||
5.5 ~ 6.75 | 3.5 ~ 4.5 | The rest | 0.3 | 0.08 | 0.05 | 0.015 | 0.2 | 0.1 | 0.4 |
Extreme Condition Sequence | External Loads Location | Fixed Boundary Location | The Number of Multiple Load Cases |
---|---|---|---|
1 | A,B | a,b,c,d | 6 |
2 | A,C | a,b,c,d | 6 |
3 | B,C | a,b,c,d | 6 |
4 | A,B | a,b,c | 6 |
5 | A,B | a,b,d | 6 |
6 | A,B | a,c,d | 6 |
7 | A,B | b,c,d | 6 |
8 | A,C | a,b,c | 6 |
9 | A,C | a,b,d | 6 |
10 | A,C | a,c,d | 6 |
11 | A,C | b,c,d | 6 |
12 | B,C | a,b,c | 6 |
13 | B,C | a,b,d | 6 |
14 | B,C | a,c,d | 6 |
15 | B,C | b,c,d | 6 |
16 | A,B,C | a,b,c | 6 |
17 | A,B,C | a,b,d | 6 |
18 | A,B,C | a,c,d | 6 |
19 | A,B,C | b,c,d | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Wang, Q.; Wang, C.; Gong, P.; Shi, Y.; Yu, Y.; Liu, Z. Topology Optimization Design and Experimental Research of a 3D-Printed Metal Aerospace Bracket Considering Fatigue Performance. Appl. Sci. 2021, 11, 6671. https://doi.org/10.3390/app11156671
Chen Y, Wang Q, Wang C, Gong P, Shi Y, Yu Y, Liu Z. Topology Optimization Design and Experimental Research of a 3D-Printed Metal Aerospace Bracket Considering Fatigue Performance. Applied Sciences. 2021; 11(15):6671. https://doi.org/10.3390/app11156671
Chicago/Turabian StyleChen, Yisheng, Qianglong Wang, Chong Wang, Peng Gong, Yincheng Shi, Yi Yu, and Zhenyu Liu. 2021. "Topology Optimization Design and Experimental Research of a 3D-Printed Metal Aerospace Bracket Considering Fatigue Performance" Applied Sciences 11, no. 15: 6671. https://doi.org/10.3390/app11156671
APA StyleChen, Y., Wang, Q., Wang, C., Gong, P., Shi, Y., Yu, Y., & Liu, Z. (2021). Topology Optimization Design and Experimental Research of a 3D-Printed Metal Aerospace Bracket Considering Fatigue Performance. Applied Sciences, 11(15), 6671. https://doi.org/10.3390/app11156671