The Numerical Investigation of Structural Strength Assessment of LNG CCS by Sloshing Impacts Based on Multiphase Fluid Model
Abstract
:1. Introduction
2. Numerical Scheme
2.1. Governing Equations
2.2. Dam Breaking Problem
3. Sloshing Simulation
3.1. Sloshing Problem
3.2. Simulation Model
3.3. Simulation Results of Sloshing
3.4. Pressure History of Sloshing Pressure
4. Fluid Structure Interaction Analysis
4.1. LNG CCS Model
4.2. Impact Velocity of Sloshing
4.3. Localized Fluid Column Model
5. Structural Strength Assessment of the LNG CCS
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, W.; Peng, Y.; Zhou, Y.; Zhang, Q. Liquid sloshing in partly-filled laterally-excited cylindrical tanks equipped with multi baffles. Appl. Ocean Res. 2016, 59, 543–563. [Google Scholar] [CrossRef]
- Xue, M.; Lin, P. Numerical study of ring baffle effects on reducing violent liquid sloshing. Comput. Fluids 2011, 52, 116–129. [Google Scholar] [CrossRef]
- Hasheminejad, S.M.; Mohammadi, M.M.; Jarrahi, M. Liquid sloshing in partly-filled laterally-excited circular tanks equipped with baffles. J. Fluids Struct. 2014, 44, 97–114. [Google Scholar] [CrossRef]
- Wang, W.; Guo, Z.; Peng, Y.; Zhang, Q. A numerical study of the effects of the T-shaped baffles on liquid sloshing in horizontal elliptical tanks. Ocean Eng. 2016, 111, 543–568. [Google Scholar] [CrossRef]
- Kim, H.; Parthasarathy, N.; Choi, Y.; Lee, Y. Reduction of sloshing effects in a rectangular tank through an air-trapping mechanism—A numerical study. J. Mech. Sci. Technol. 2018, 32, 1049–1056. [Google Scholar] [CrossRef]
- ABS (American Bureau of Shipping). Guidance Notes on Strength Assessment of Membrane-Type LNG Containment Systems under Sloshing Loads; American Bureau of Shipping: Houston, TX, USA, 2006.
- DNV (Det Norske Veritas). Sloshing Analysis of Lng Membrane Tanks; Classification Notes No. 30.9; DNV (Det Norske Veritas): Høvik, Norway, 2016. [Google Scholar]
- BV (Bureau Veritas). Strength assessment of LNG membrane tanks under sloshing loads. In Guidance Note NI 564 DT R00 E; BV (Bureau Veritas): Neuilly sur Seine, France, 2011. [Google Scholar]
- Graczyk, M.; Moan, T. Structural response to sloshing excitation in membrane LNG tank. J. Offsh. Mech. Arct. Eng. 2011, 133, 021103. [Google Scholar] [CrossRef]
- Kim, Y. Numerical simulation of sloshing flows with impact load. Appl. Ocean Res. 2001, 23, 53–62. [Google Scholar] [CrossRef]
- Faltinsen, O.M.; Rognebakke, O.F.; Lukovsky, I.A.; Timokha, A.N. Multidimensional modal analysis of nonlinear sloshing in a rectangular tank with finite water depth. J. Fluid Mech. 2000, 407, 201–234. [Google Scholar] [CrossRef]
- Hwang, S.Y.; Lee, J.H.; Kim, S.C. Simplified impinging jet model for practical sloshing assessment of LNG cargo containment. In Proceedings of the 22nd International Offshore and Polar Engineering Conference, Rhodes, Greece, 17–22 June 2012; Volume 3, pp. 518–524. [Google Scholar]
- Ito, H.; Suh, Y.S.; Chun, S.E.; Kumar, Y.V.S.; Ha, M.K.; Park, J.J.; Yu, H.C.; Wang, B. A direct assessment approach for structural strength evaluation of cargo containment system under sloshing enside LNGC tanks based on fluid structure interaction. In Proceedings of the 27th International Conference on Offshore Mechanics and Arctic Engineering, Estoril, Portugal, 15–20 June 2008; Volume 5, pp. 835–845. [Google Scholar]
- Kim, Y.I.; Jang, C.H.; Kang, J.K. Development of the response-based strength assessment procedure of the LNG cargo containment system under sloshing impact load. In Proceedings of the 12th International Offshore and Polar Engineering Conference, Maui, HI, USA, 19–24 June 2011; Volume 3, pp. 170–176. [Google Scholar]
- Kim, Y.; Lee, J.; Lee, Y.B.; Kim, Y.S. Sensitivity study on computational parameters for the prediction of slosh-induced impact pressures. In Proceedings of the 15th International Offshore and Polar Engineering Conference, Seoul, Korea, 19–24 June 2005; pp. 254–261. [Google Scholar]
- Godderidge, B.; Turnock, S.; Earl, C.; Tan, M. The effect of fluid compressibility on the simulation of sloshing impacts. J. Ocean Eng. 2009, 36, 578–587. [Google Scholar] [CrossRef]
- Ishii, M.; Hibiki, T. Thermo-Fluid Dynamics of Two-Phase Flow; Springer: New York, NY, USA, 2006. [Google Scholar]
- Chen, B.; Nokes, R. Time-independent finite difference analysis of fully non-linear and viscous fluid sloshing in a rectangular tank. J. Comput. Phys. 2005, 209, 47–81. [Google Scholar] [CrossRef]
- Wu, C.; Chen, B.; Hung, T. Hydrodynamic forces induced by transient sloshing in a 3D rectangular tank due to oblique horizontal excitation. Comput. Math. Appl. 2013, 65, 1163–1186. [Google Scholar] [CrossRef]
- Arafa, M. Finite element analysis of sloshing in liquid-filled containers. J. Vib. Control 2007, 13, 883–903. [Google Scholar] [CrossRef]
- Firoozkoohi, R.; Faltinsen, O.M. Experimental and numerical investigation of the effect of swash bulkhead on sloshing. In Proceedings of the 20th International Offshore and Polar Engineering Conference, Beijing, China, 20–25 June 2010. [Google Scholar]
- Godderidge, B.; Tan, M.; Turnock, S.; Earl, C. A verification and validation study of the application of computational fluid dynamics to the modelling of lateral sloshing. In Ship Science Report No. 140; University of Southampton Fluid Structure Interaction Research Group: Southampton, UK, 2006. [Google Scholar]
- Godderidge, B.; Turnock, S.; Tan, M.; Earl, C. An investigation of multiphase CFD modelling of a lateral sloshing tank. Comput. Fluids 2009, 38, 183–193. [Google Scholar] [CrossRef]
- ANSYS. CFX Solver Theory Guide; Release 15; ANSYS, Inc.: Canonsburg, PA, USA, 2013. [Google Scholar]
- Yang, K.K.; Kim, Y.H. Numerical Analysis of Violent Sloshing Problems by CCUP Method. J. Soc. Nav. Archit. Korea 2010, 17, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Hu, C.; Kashiwagi, M. A CIP-based method for numerical simulations of violent free-surface flows. J. Mar. Sci. Technol. 2004, 9, 143–157. [Google Scholar] [CrossRef]
- Aliabadi, S.; Johnson, A.; Abedi, J. Comparison of finite element and pendulum models for simulation of sloshing. Comput. Fluids 2003, 32, 535–545. [Google Scholar] [CrossRef]
- Gerber, A.G. Inhomogeneous multiphase model for nonequilibrium phase transition and droplet dynamics. In Proceedings of the ASME Joint US European Fluids Engineering Summer Meeting FEDSM, Miami, FL, USA, 17–20 July 2006; p. 12. [Google Scholar]
- Gaztransport Technigaz—GTT Mark III Systems. Available online: https://gtt.fr/technologies/markiii-systems/ (accessed on 30 July 2021).
Max. Stress [MPa] | Max. Deformation [mm] | ||||
---|---|---|---|---|---|
Equivalent | Horizontal | Vertical | Shear | ||
Whole CCS | 3.32 | - | - | - | 2.6 |
Plywood | 6.8 | 0.3 (40) | 1.21 (2) | 1.32 (2.8) | |
R-PUF | 0.21 | 0.26 (2.4) | 0.36 (1.4) | 0.06 (1.4) | |
Mastic | 1.69 (15) | - | - | - | 2.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, S.-Y.; Lee, J.-H. The Numerical Investigation of Structural Strength Assessment of LNG CCS by Sloshing Impacts Based on Multiphase Fluid Model. Appl. Sci. 2021, 11, 7414. https://doi.org/10.3390/app11167414
Hwang S-Y, Lee J-H. The Numerical Investigation of Structural Strength Assessment of LNG CCS by Sloshing Impacts Based on Multiphase Fluid Model. Applied Sciences. 2021; 11(16):7414. https://doi.org/10.3390/app11167414
Chicago/Turabian StyleHwang, Se-Yun, and Jang-Hyun Lee. 2021. "The Numerical Investigation of Structural Strength Assessment of LNG CCS by Sloshing Impacts Based on Multiphase Fluid Model" Applied Sciences 11, no. 16: 7414. https://doi.org/10.3390/app11167414
APA StyleHwang, S. -Y., & Lee, J. -H. (2021). The Numerical Investigation of Structural Strength Assessment of LNG CCS by Sloshing Impacts Based on Multiphase Fluid Model. Applied Sciences, 11(16), 7414. https://doi.org/10.3390/app11167414