Special Issue on “Natural Language Processing: Emerging Neural Approaches and Applications”
Acknowledgments
Conflicts of Interest
References
- Ferrucci, D.; Brown, E.; Chu-Carroll, J.; Fan, J.; Gondek, D.; Kalyanpur, A.A.; Lally, A.; Murdock, J.W.; Nyberg, E.; Prager, J.; et al. Building Watson: An Overview of the DeepQA Project. AI Mag. 2010, 31, 59–79. [Google Scholar] [CrossRef] [Green Version]
- Silver, D.; Huang, A.; Maddison, C.; Guez, A.; Sifre, L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam, V.; Lanctot, M.; et al. Mastering the game of Go with deep neural networks and tree search. Nature 2016, 529, 484–489. [Google Scholar] [CrossRef] [PubMed]
- Newborn, M. Kasparov Versus Deep Blue; Springer: Berlin, Germany, 1997. [Google Scholar]
- Baughman, A.; Chuang, W.; Dixon, K.; Benz, Z.; Basilico, J. DeepQA Jeopardy! Gamification: A Machine-Learning Perspective. Comput. Intell. AI Games IEEE Trans. 2014, 6, 55–66. [Google Scholar] [CrossRef]
- Yadav, A.; Vishwakarma, D.K. Sentiment analysis using deep learning architectures: A review. Artif. Intell. Rev. 2019, 53, 4335–4385. [Google Scholar] [CrossRef]
- Yuan, S.; Zhang, Y.; Tang, J.; Hall, W.; Cabotà, J.B. Expert finding in community question answering: A review. Artif. Intell. Rev. 2020, 53, 843–874. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, M.; Fujita, H. Word Sense Disambiguation: A comprehensive knowledge exploitation framework. Knowl. Based Syst. 2020, 190, 105030. [Google Scholar] [CrossRef]
- Laha, A.; Raykar, V. An Empirical Evaluation of various Deep Learning Architectures for Bi-Sequence Classification Tasks. In Proceedings of the COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, Osaka, Japan, 11–16 December 2016; pp. 2762–2773. [Google Scholar]
- Nguyen, V.H.; Cheng, J.S.; Yu, Y.; Thai, V.T. An architecture of deep learning network based on ensemble empirical mode decomposition in precise identification of bearing vibration signal. J. Mech. Sci. Technol. 2019, 33, 41–50. [Google Scholar] [CrossRef]
- Guo, Q.; Chen, S. An Empirical Study towards Characterizing Deep Learning Development and Deployment across Different Frameworks and Platforms. arXiv 2019, arXiv:1909.06727v1. Available online: https://arxiv.org/pdf/1909.06727.pdf (accessed on 20 July 2021).
- Pota, M.; Marulli, F.; Esposito, M.; De Pietro, G.; Fujita, H. Multilingual POS tagging by a composite deep architecture based on character-level features and on-the-fly enriched Word Embeddings. Knowl. Based Syst. 2019, 164, 309–323. [Google Scholar] [CrossRef]
- Cherry, C.A. EMNLP Workshop on Deep Learning for Low-Resource NLP. 20 June 2019, China, Association for Computational Linguistics. Available online: https://sites.google.com/view/deeplo19 (accessed on 20 July 2021).
- Zohuri, B.; Moghaddam, M. Deep Learning Limitations and Flaws. Mod. Approaches Mater. Sci. Short Commun. 2020, 2, 241–250. [Google Scholar]
- Li, Q.; Li, S.; Zhang, S.; Hu, J.; Hu, J. A Review of Text Corpus-Based Tourism Big Data Mining. Appl. Sci. 2019, 9, 3300. [Google Scholar] [CrossRef] [Green Version]
- Park, K.-M.; Shin, D.; Yoo, Y. Evolutionary Neural Architecture Search (NAS) Using Chromosome Non-Disjunction for Korean Grammaticality Tasks. Appl. Sci. 2020, 10, 3457. [Google Scholar] [CrossRef]
- Roldan-Molina, G.R.; Mendez, J.R.; Yevseyeva, I.; Basto-Fernandes, V. Ontology Fixing by Using Software Engineering Technology. Appl. Sci. 2020, 10, 6328. [Google Scholar] [CrossRef]
- Xu, S.; Shen, X.; Fukumoto, F.; Li, J.; Suzuki, Y.; Nishizaki, H. Paraphrase Identification with Lexical, Syntactic and Sentential Encodings. Appl. Sci. 2020, 10, 4144. [Google Scholar] [CrossRef]
- Park, H.; Park, J. Assessment of Word-Level Neural Language Models for Sentence Completion. Appl. Sci. 2020, 10, 1340. [Google Scholar] [CrossRef] [Green Version]
- Javaloy, A.; García-Mateos, G. Preliminary Results on Different Text Processing Tasks Using Encoder-Decoder Networks and the Causal Feature Extractor. Appl. Sci. 2020, 10, 5772. [Google Scholar] [CrossRef]
- Javaloy, A.; García-Mateos, G. Text Normalization Using Encoder–Decoder Networks Based on the Causal Feature Extractor. Appl. Sci. 2020, 10, 4551. [Google Scholar] [CrossRef]
- Pota, M.; Esposito, M.; De Pietro, G.; Fujita, H. Best Practices of Convolutional Neural Networks for Question Classification. Appl. Sci. 2020, 10, 4710. [Google Scholar] [CrossRef]
- Lei, S.; Wang, X.; Yuan, C. Cooperative Multi-Agent Reinforcement Learning with Conversation Knowledge for Dialogue Management. Appl. Sci. 2020, 10, 2740. [Google Scholar] [CrossRef] [Green Version]
- Rehman, U.U.; Chang, D.J.; Jung, Y.; Akhtar, U.; Razzaq, M.A.; Lee, S. Medical Instructed Real-Time Assistant for Patient with Glaucoma and Diabetic Conditions. Appl. Sci. 2020, 10, 2216. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Oh, S.; Kwon, O.-W.; Kim, H. Multi-Turn Chatbot Based on Query-Context Attentions and Dual Wasserstein Generative Adversarial Networks. Appl. Sci. 2019, 9, 3908. [Google Scholar] [CrossRef] [Green Version]
- Maslej-Krešňáková, V.; Sarnovský, M.; Butka, P.; Machová, K. Comparison of Deep Learning Models and Various Text Pre-Processing Techniques for the Toxic Comments Classification. Appl. Sci. 2020, 10, 8631. [Google Scholar] [CrossRef]
- Chen, X.; Ke, L.; Lu, Z.; Su, H.; Wang, H. A Novel Hybrid Model for Cantonese Rumor Detection on Twitter. Appl. Sci. 2020, 10, 7093. [Google Scholar] [CrossRef]
- Jnoub, N.; Al Machot, F.; Klas, W. A Domain-Independent Classification Model for Sentiment Analysis Using Neural Models. Appl. Sci. 2020, 10, 6221. [Google Scholar] [CrossRef]
- Pelicon, A.; Pranjić, M.; Miljković, D.; Škrlj, B.; Pollak, S. Zero-Shot Learning for Cross-Lingual News Sentiment Classification. Appl. Sci. 2020, 10, 5993. [Google Scholar] [CrossRef]
- Rizkallah, S.; Atiya, A.F.; Shaheen, S. A Polarity Capturing Sphere for Word to Vector Representation. Appl. Sci. 2020, 10, 4386. [Google Scholar] [CrossRef]
- Ronran, C.; Lee, S.; Jang, H.J. Delayed Combination of Feature Embedding in Bidirectional LSTM CRF for NER. Appl. Sci. 2020, 10, 7557. [Google Scholar] [CrossRef]
- Sarhan, I.; Spruit, M. Can We Survive without Labelled Data in NLP? Transfer Learning for Open Information Extraction. Appl. Sci. 2020, 10, 5758. [Google Scholar] [CrossRef]
- Aubaid, A.M.; Mishra, A. A Rule-Based Approach to Embedding Techniques for Text Document Classification. Appl. Sci. 2020, 10, 4009. [Google Scholar] [CrossRef]
- Park, S.; Kim, H. Dual Pointer Network for Fast Extraction of Multiple Relations in a Sentence. Appl. Sci. 2020, 10, 3851. [Google Scholar] [CrossRef]
- Xiao, S.; Song, M. A Text-Generated Method to Joint Extraction of Entities and Relations. Appl. Sci. 2019, 9, 3795. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Liu, P.; Zhu, Z.; Yin, H.; Zhang, Q.; Zhang, L. A Text Abstraction Summary Model Based on BERT Word Embedding and Reinforcement Learning. Appl. Sci. 2019, 9, 4701. [Google Scholar] [CrossRef] [Green Version]
- Quan, C.; Luo, Z.; Wang, S. A Hybrid Deep Learning Model for Protein–Protein Interactions Extraction from Biomedical Literature. Appl. Sci. 2020, 10, 2690. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Liu, Y.; Qian, M.; Guan, C.; Yuan, X. Information Extraction from Electronic Medical Records Using Multitask Recurrent Neural Network with Contextual Word Embedding. Appl. Sci. 2019, 9, 3658. [Google Scholar] [CrossRef] [Green Version]
- Boban, I.; Doko, A.; Gotovac, S. Improving Sentence Retrieval Using Sequence Similarity. Appl. Sci. 2020, 10, 4316. [Google Scholar] [CrossRef]
- Jang, Y.; Kim, H. Reliable Classification of FAQs with Spelling Errors Using an Encoder-Decoder Neural Network in Korean. Appl. Sci. 2019, 9, 4758. [Google Scholar] [CrossRef] [Green Version]
- Kang, X.; Li, B.; Yao, H.; Liang, Q.; Li, S.; Gong, J.; Li, X. Incorporating Synonym for Lexical Sememe Prediction: An Attention-Based Model. Appl. Sci. 2020, 10, 5996. [Google Scholar] [CrossRef]
- Li, S.; Chen, R.; Wan, B.; Gong, J.; Yang, L.; Yao, H. DAWE: A Double Attention-Based Word Embedding Model with Sememe Structure Information. Appl. Sci. 2020, 10, 5804. [Google Scholar] [CrossRef]
- Du, X.; Yu, J.; Yi, Z.; Li, S.; Ma, J.; Tan, Y.; Wu, Q. A Hybrid Adversarial Attack for Different Application Scenarios. Appl. Sci. 2020, 10, 3559. [Google Scholar] [CrossRef]
- Rahman, M.M.; Watanobe, Y.; Nakamura, K. Source Code Assessment and Classification Based on Estimated Error Probability Using Attentive LSTM Language Model and Its Application in Programming Education. Appl. Sci. 2020, 10, 2973. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esposito, M.; Masala, G.L.; Minutolo, A.; Pota, M. Special Issue on “Natural Language Processing: Emerging Neural Approaches and Applications”. Appl. Sci. 2021, 11, 6717. https://doi.org/10.3390/app11156717
Esposito M, Masala GL, Minutolo A, Pota M. Special Issue on “Natural Language Processing: Emerging Neural Approaches and Applications”. Applied Sciences. 2021; 11(15):6717. https://doi.org/10.3390/app11156717
Chicago/Turabian StyleEsposito, Massimo, Giovanni Luca Masala, Aniello Minutolo, and Marco Pota. 2021. "Special Issue on “Natural Language Processing: Emerging Neural Approaches and Applications”" Applied Sciences 11, no. 15: 6717. https://doi.org/10.3390/app11156717
APA StyleEsposito, M., Masala, G. L., Minutolo, A., & Pota, M. (2021). Special Issue on “Natural Language Processing: Emerging Neural Approaches and Applications”. Applied Sciences, 11(15), 6717. https://doi.org/10.3390/app11156717