Applications of Magnesium and Its Alloys: A Review
Abstract
:1. Introduction
2. Production Techniques
2.1. Carbothermic Reduction as a New Production Technique
2.2. 3D Printing as a New Production Technique
2.3. Secondary Magnesium Production
3. Magnesium and Its Alloys as an Engineering Material
3.1. Engineering Properties
3.2. Engineering Applications
3.2.1. Aerospace Applications
3.2.2. Automotive Applications
4. Magnesium and Its Alloys as a Biomaterial
4.1. Biological Competencies
4.2. Mechanical Functionality
4.3. Corrosion
4.4. Anti-Microbial Strategies
4.5. Biomedical Applications
4.5.1. Musculoskeletal and Orthopedic Applications
4.5.2. Cardiovascular Applications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shand, M.A. History of Magnesia. In The Chemistry and Technology of Magnesia; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; pp. 1–4. [Google Scholar] [CrossRef]
- Dobrzański, L.A. The Importance of Magnesium and Its Alloys in Modern Technology and Methods of Shaping Their Structure and Properties. In Magnesium and Its Alloys; CRC Press: Boca Raton, FL, USA, 2019; pp. 1–28. [Google Scholar] [CrossRef]
- Song, G.L.; Atrens, A. Corrosion Mechanisms of Magnesium Alloys. Adv. Eng. Mater. 1999, 1, 11–33. [Google Scholar] [CrossRef]
- Luthringer, B.J.C.; Feyerabend, F.; Willumeit-Römer, R. Magnesium-Based Implants: A Mini-Review. Magnes. Res. 2014, 27, 142–154. [Google Scholar] [CrossRef] [Green Version]
- U.S. Geological Survey. 01-341, Magnesium, Its Alloys and Compounds. 2001. Available online: https://pubs.usgs.gov/of/2001/of01-341/ (accessed on 25 October 2020).
- Durlach, J. Overview of Magnesium Research: History and Current Trends. In New Perspectives in Magnesium Research; Springer: London, UK, 2006; pp. 3–10. [Google Scholar] [CrossRef]
- Witte, F. The History of Biodegradable Magnesium Implants: A Review. Acta Biomater. 2010, 6, 1680–1692. [Google Scholar] [CrossRef] [PubMed]
- Czerwinski, F. Magnesium and Its Alloys. In Magnesium Injection Molding; Springer: New York, NY, USA, 2008; pp. 1–79. [Google Scholar] [CrossRef]
- Emsley, J. Magnesium. Available online: https://edu.rsc.org/elements/magnesium/2020016.article (accessed on 26 June 2021).
- Powell, B.R.; Krajewski, P.E.; Luo, A.A. Magnesium Alloys for Lightweight Powertrains and Automotive Structures. In Materials, Design and Manufacturing for Lightweight Vehicles; Elsevier: Amsterdam, The Netherlands, 2021; pp. 125–186. [Google Scholar] [CrossRef]
- Dieringa, H.; Stjohn, D.; Prado, M.T.P.; Kainer, K. Editorial: Latest Developments in the Field of Magnesium Alloys and Their Applications. Front. Mater. 2021. [Google Scholar] [CrossRef]
- ReportLinker, Global Magnesium Industry, Global Industry Analysis 2020. Available online: https://www.reportbuyer.com/product/5799036/global-magnesium-industry.html (accessed on 10 October 2020).
- U.S. Geological Survey. Mineral Commodity Summaries (Magnesium Metals); Department of the Interior: Washington, DC, USA, 2020. [Google Scholar]
- Polmear, I.J. Magnesium Alloys and Applications. Mater. Sci. Technol. 1994, 10, 1–16. [Google Scholar] [CrossRef]
- Cherubini, F.; Raugei, M.; Ulgiati, S. Lca of Magnesium Production. Resour. Conserv. Recycl. 2008, 52, 1093–1100. [Google Scholar] [CrossRef]
- Holywell, G.C. Magnesium: The First Quarter Millennium. JOM 2005, 57, 26–33. [Google Scholar] [CrossRef]
- Wu, H.; Zhao, P.; Jing, M.; Li, J.; Chen, T. Magnesium Production by a Coupled Electric and Thermal Field. Vacuum 2021, 183, 109822. [Google Scholar] [CrossRef]
- Gao, F.; Nie, Z.-R.; Wang, Z.-H.; Gong, X.-Z.; Zuo, T.-Y. Assessing Environmental Impact of Magnesium Production Using Pidgeon Process in China. Trans. Nonferrous Met. Soc. China 2008, 18, 749–754. [Google Scholar] [CrossRef]
- Ramakrishnan, S.; Koltun, P. Global Warming Impact of the Magnesium Produced in China Using the Pidgeon Process. Resour. Conserv. Recycl. 2004, 42, 49–64. [Google Scholar] [CrossRef] [Green Version]
- Brooks, G.; Trang, S.; Witt, P.; Khan, M.N.H.; Nagle, M. The Carbothermic Route To Magnesium. JOM 2006, 58, 51–55. [Google Scholar] [CrossRef]
- Abedini Najafabadi, H.; Ozalp, N.; Epstein, M.; Davis, R. Solar Carbothermic Reduction of Dolime as a Promising Option To Produce Magnesium and Calcium. Ind. Eng. Chem. Res. 2019, 58, 23540–23548. [Google Scholar] [CrossRef]
- Wang, Y.; Fu, P.; Wang, N.; Peng, L.; Kang, B.; Zeng, H.; Yuan, G.; Ding, W. Challenges and Solutions for the Additive Manufacturing of Biodegradable Magnesium Implants. Engineering 2020. [Google Scholar] [CrossRef]
- Karunakaran, R.; Ortgies, S.; Tamayol, A.; Bobaru, F.; Sealy, M.P. Additive Manufacturing of Magnesium Alloys. Bioact. Mater. 2020, 5, 44–54. [Google Scholar] [CrossRef]
- Kurzynowski, T.; Pawlak, A.; Smolina, I. The Potential of Slm Technology for Processing Magnesium Alloys in Aerospace Industry. Arch. Civ. Mech. Eng. 2020, 20. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.; Wen, P.; Guo, H.; Xia, D.; Zheng, Y.; Jauer, L.; Poprawe, R.; Voshage, M.; Schleifenbaum, J.H. Additive Manufacturing of Biodegradable Metals: Current Research Status and Future Perspectives. Acta Biomater. 2019, 98, 3–22. [Google Scholar] [CrossRef]
- Davim, J.P. Additive and Subtractive Manufacturing: Emergent Technologies; De Gruyter: Berlin, Germany, 2020. [Google Scholar]
- International Magnesium Association. Recycling Magnesium. Available online: https://www.intlmag.org/page/sustain_recycle_ima (accessed on 10 October 2020).
- Ehrenberger, S.; Friedrich, H.E. Life-Cycle Assessment of the Recycling of Magnesium Vehicle Components. JOM 2013, 65, 1303–1309. [Google Scholar] [CrossRef]
- Mendis, C.L.; Singh, A. Magnesium Recycling: To the Grave and Beyond. JOM 2013, 65, 1283–1284. [Google Scholar] [CrossRef] [Green Version]
- Yam, B.J.Y.; Le, D.K.; Do, N.H.; Nguyen, P.T.T.; Thai, Q.B.; Phan-Thien, N.; Duong, H.M. Recycling of Magnesium Waste into Magnesium Hydroxide Aerogels. J. Environ. Chem. Eng. 2020, 8, 104101. [Google Scholar] [CrossRef]
- Moosbrugger, C.; Marquard, L. Engineering Properties of Magnesium Alloys; ASM International: Materials Park, OH, USA, 2017; p. 184. [Google Scholar]
- Kulekci, M.K. Magnesium and Its Alloys Applications in Automotive Industry. Int. J. Adv. Manuf. Technol. 2008, 39, 851–865. [Google Scholar] [CrossRef]
- Hornberger, H.; Virtanen, S.; Boccaccini, A.R. Biomedical Coatings on Magnesium Alloys—A Review. Acta Biomater. 2012, 8, 2442–2455. [Google Scholar] [CrossRef] [PubMed]
- Gray, J.E.; Luan, B. Protective Coatings on Magnesium and Its Alloys—A Critical Review. J. Alloys Compd. 2002, 336, 88–113. [Google Scholar] [CrossRef]
- Nie, J.-F. Precipitation and Hardening in Magnesium Alloys. Metall. Mater. Trans. A 2012, 43, 3891–3939. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Kumar, S.; Mukhopadhyay, N.K. Introduction To Magnesium Alloy Processing Technology and Development of Low-Cost Stir Casting Process for Magnesium Alloy and Its Composites. J. Magnes. Alloys 2018, 6, 245–254. [Google Scholar] [CrossRef]
- Abbott, T. Casting Technologies, Microstructure and Properties. In Magnesium and Its Alloys; CRC Press: Boca Raton, FL, USA, 2019; pp. 29–45. [Google Scholar]
- Somekawa, H. Effect of Alloying Elements on Fracture Toughness and Ductility in Magnesium Binary Alloys; A Review. Mater. Trans. 2020, 61, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Dziubińska, A.; Gontarz, A.; Horzelska, K.; Pieśko, P. The Microstructure and Mechanical Properties of Az31 Magnesium Alloy Aircraft Brackets Produced by a New Forging Technology. Procedia Manuf. 2015, 2, 337–341. [Google Scholar] [CrossRef] [Green Version]
- Fujisawa, S.; Yonezu, A. Mechanical Property of Microstructure in Die-Cast Magnesium Alloy Evaluated By Indentation Testing at Elevated Temperature. In Recent Advances in Structural Integrity Analysis—Proceedings of the International Congress (Apcf/Sif-2014); Elsevier: Amsterdam, The Netherlands, 2014; pp. 422–426. [Google Scholar]
- Gupta, M.; Wong, W.L.E. Magnesium-Based Nanocomposites: Lightweight Materials of the Future. Mater. Charact. 2015, 105, 30–46. [Google Scholar] [CrossRef]
- Tekumalla, S.; Gupta, M. Processing, Properties and Potential Applications of Magnesium Alloy-Based Nanocomposites: A Review. In The Minerals, Metals & Materials Series; Springer International Publishing: Cham, Switzerland, 2019; pp. 3–18. [Google Scholar]
- Eddy Jai Poinern, G.; Brundavanam, S.; Fawcett, D. Biomedical Magnesium Alloys: A Review of Material Properties, Surface Modifications and Potential as a Biodegradable Orthopaedic Implant. Am. J. Biomed. Eng. 2013, 2, 218–240. [Google Scholar] [CrossRef] [Green Version]
- Memsnet®. Material: Aluminum (Al), Bulk. Available online: http://www.memsnet.org/material/aluminumalbulk/ (accessed on 13 May 2021).
- Davis, J.R. Aluminum and Aluminum Alloys; ASM International: Materials Park, OH, USA, 2001; p. 351. [Google Scholar]
- Chakraborty Banerjee, P.; Al-Saadi, S.; Choudhary, L.; Harandi, S.E.; Singh, R. Magnesium Implants: Prospects and Challenges. Materials 2019, 12, 136. [Google Scholar] [CrossRef] [Green Version]
- Silver, F.H.; Christiansen, D.L. Mechanical Properties of Tissues. In Biomaterials Science and Biocompatibility; Silver, F.H., Christiansen, D.L., Eds.; Springer: New York, NY, USA, 1999; pp. 187–212. [Google Scholar]
- Morgan, E.F.; Unnikrisnan, G.U.; Hussein, A.I. Bone Mechanical Properties in Healthy and Diseased States. Annu. Rev. Biomed. Eng. 2018, 20, 119–143. [Google Scholar] [CrossRef] [PubMed]
- Mordike, B.L.; Ebert, T. Magnesium. Mater. Sci. Eng. A 2001, 302, 37–45. [Google Scholar] [CrossRef]
- Gupta, M. Utilizing Magnesium Based Materials To Reduce Green House Gas Emissions in Aerospace Sector. Aeronaut. Aerosp. Open Access J. 2017, 1. [Google Scholar] [CrossRef] [Green Version]
- Gialanella, S.; Malandruccolo, A. Alloys for Aircraft Structures. In Aerospace Alloys; Springer International Publishing: Cham, Switzerland, 2020; pp. 41–127. [Google Scholar]
- Luo, A.A. Applications: Aerospace, Automotive and Other Structural Applications of Magnesium. In Fundamentals of Magnesium Alloy Metallurgy; Elsevier: Amsterdam, The Netherlands, 2013; pp. 266–316. [Google Scholar]
- Jeal, N. High-Performance Magnesium. Advanced Materials & Processes. 2005. pp. 65–67. Available online: https://www.asminternational.org/documents/10192/1882931/amp16309p065.pdf/2eea78b4-8417-4e95-bf5b-98041cc3209f (accessed on 1 November 2020).
- Sankaranarayanan, S.; Gupta, M. Emergence of God’s Favorite Metallic Element: Magnesium Based Materials for Engineering and Biomedical Applications. Mater. Today Proc. 2021, 39, 311–316. [Google Scholar] [CrossRef]
- Tekumalla, S.; Gupta, M. Introductory Chapter: An Insight Into Fascinating Potential of Magnesium. In Magnesium—The Wonder Element for Engineering/Biomedical Applications; IntechOpen: London, UK, 2020. [Google Scholar]
- Riaz, U.; Shabib, I.; Haider, W. The Current Trends of Mg Alloys in Biomedical Applications—A Review. J. Biomed. Mater. Res. Part B Appl. Biomater. 2019, 107, 1970–1996. [Google Scholar] [CrossRef]
- Zhao, D.; Witte, F.; Lu, F.; Wang, J.; Li, J.; Qin, L. Current Status on Clinical Applications of Magnesium-Based Orthopaedic Implants: A Review From Clinical Translational Perspective. Biomaterials 2017, 112, 287–302. [Google Scholar] [CrossRef]
- Chen, J.; Tan, L.; Yu, X.; Etim, I.P.; Ibrahim, M.; Yang, K. Mechanical Properties of Magnesium Alloys for Medical Application: A Review. J. Mech. Behav. Biomed. Mater. 2018, 87, 68–79. [Google Scholar] [CrossRef] [PubMed]
- Kamrani, S.; Fleck, C. Biodegradable Magnesium Alloys as Temporary Orthopaedic Implants: A Review. Biometals 2019, 32, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Witte, F.; Hort, N.; Feyerabend, F.; Vogt, C. Magnesium (Mg) Corrosion: A Challenging Concept for Degradable Implants. In Corrosion of Magnesium Alloys; Elsevier: Amsterdam, The Netherlands, 2011; pp. 403–425. [Google Scholar]
- Agarwal, S.; Curtin, J.; Duffy, B.; Jaiswal, S. Biodegradable Magnesium Alloys for Orthopaedic Applications: A Review on Corrosion, Biocompatibility and Surface Modifications. Mater. Sci. Eng. C 2016, 68, 948–963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, R.-C.; Yin, Z.-Z.; Chen, X.-B.; Xu, D.-K. Corrosion Types of Magnesium Alloys. In Magnesium Alloys—Selected Issue; IntechOpen: London, UK, 2018. [Google Scholar]
- Song, G. Control OF Biodegradation of Biocompatable Magnesium Alloys. Corros. Sci. 2007, 49, 1696–1701. [Google Scholar] [CrossRef]
- Song, G.; Atrens, A.; Stjohn, D. An Hydrogen Evolution Method for the Estimation of the Corrosion Rate of Magnesium Alloys. In Essential Readings in Magnesium Technology; Springer International Publishing: Cham, Switzerland, 2016; pp. 565–572. [Google Scholar]
- Tang, Y.; Zhu, L.; Zhang, P.; Zhao, K.; Wu, Z. Enhanced Corrosion Resistance of Bio-Piezoelectric Composite Coatings on Medical Magnesium Alloys. Corros. Sci. 2020, 176, 108939. [Google Scholar] [CrossRef]
- Mousa, H.M.; Chan, H.P.; Kim, C.S. Surface Modification of Magnesium and its Alloys Using Anodization for Orthopedic Implant Application. In Magnesium Alloys; IntechOpen: London, UK, 2017. [Google Scholar]
- Narayanan, T.S.N.S.; Park, I.-S.; Lee, M.-H. Surface Modification of Magnesium and its Alloys for Biomedical Applications. In Surface Modification of Magnesium and Its Alloys for Biomedical Applications; Elsevier: Amsterdam, The Netherlands, 2015; pp. 29–87. [Google Scholar]
- Shao, Y.; Zeng, R.-C.; Li, S.-Q.; Cui, L.-Y.; Zou, Y.-H.; Guan, S.-K.; Zheng, Y.-F. Advance in Antibacterial Magnesium Alloys and Surface Coatings on Magnesium Alloys: A Review. Acta Metall. Sin. (Engl. Lett.) 2020, 33, 615–629. [Google Scholar] [CrossRef]
- Ahmed, W.; Zhai, Z.; Gao, C. Adaptive Antibacterial Biomaterial Surfaces and Their Applications. Mater. Today Bio 2019, 2, 100017. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Wang, G.; Jin, W.; Zhang, X.; Huang, Y.; Gao, A.; Wu, H.; Wu, G.; Chu, P.K. Systematic Study of Inherent Antibacterial Properties of Magnesium-Based Biomaterials. ACS Appl. Mater. Interfaces 2016, 8, 9662–9673. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Sánchez, J.; Pacha-Olivenza, M.Á.; González-Martín, M.L. Bactericidal Effect of Magnesium Ions over Planktonic and Sessile Staphylococcus Epidermidis and Escherichia Coli. Mater. Chem. Phys. 2019, 221, 342–348. [Google Scholar] [CrossRef]
- Liu, C.; Ren, Z.; Xu, Y.; Pang, S.; Zhao, X.; Zhao, Y. Biodegradable Magnesium Alloys Developed as Bone Repair Materials: A Review. Scanning 2018, 2018, 9216314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.L.; Xu, J.K.; Hopkins, C.; Chow, D.H.K.; Qin, L. Biodegradable Magnesium-Based Implants in Orthopedics—A General Review and Perspectives. Adv. Sci. 2020, 7, 1902443. [Google Scholar] [CrossRef]
- Biber, R.; Pauser, J.; Geßlein, M.; Bail, H.J. Magnesium-Based Absorbable Metal Screws for Intra-Articular Fracture Fixation. Case Rep. Orthop. 2016, 2016, 9673174. [Google Scholar] [CrossRef] [Green Version]
- European Innovation Partnership on Active and Healthy Ageing. MAGNEZIX®—The Metal Implant that Becomes Bone. 2016. Available online: https://ec.europa.eu/eip/ageing/sites/eipaha/files/innovative_procurement_files/EIPonAHA-2.1-Magnezix-The_metal_implant_that_becomes_bone.pdf (accessed on 30 June 2021).
- Lee, J.-W.; Han, H.-S.; Han, K.-J.; Park, J.; Jeon, H.; Ok, M.-R.; Seok, H.-K.; Ahn, J.-P.; Lee, K.E.; Lee, D.-H.; et al. Long-Term Clinical Study and Multiscale Analysis of In Vivo Biodegradation Mechanism of Mg Alloy. Proc. Natl. Acad. Sci. USA 2016, 113, 716–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biospectrum Asia. Singapore Makes Ground-Breaking Innovation in Facial Fracture Fixation. Available online: https://www.biospectrumasia.com/news/54/17376/singapore-makes-ground-breaking-innovation-in-facial-fracture-fixation.html (accessed on 30 June 2021).
- Herber, V.; Okutan, B.; Antonoglou, G.; Sommer, N.G.; Payer, M. Bioresorbable Magnesium-Based Alloys as Novel Biomaterials in Oral Bone Regeneration: General Review and Clinical Perspectives. J. Clin. Med. 2021, 10, 1842. [Google Scholar] [CrossRef]
- Schilling, T.; Bauer, M.; Lalonde, L.; Maier, H.J.; Haverich, A.; Hassel, T. Cardiovascular Applications of Magnesium Alloys. In Magnesium Alloys; IntechOpen: London, UK, 2017. [Google Scholar]
- Sangeetha, K.; Jisha Kumari, A.V.; Venkatesan, J.; Sukumaran, A.; Aisverya, S.; Sudha, P.N. Degradable Metallic Biomaterials for Cardiovascular Applications. In Fundamental Biomaterials: Metals; Elsevier: Amsterdam, The Netherlands, 2018; pp. 285–298. [Google Scholar]
- Fu, J.; Su, Y.; Qin, Y.-X.; Zheng, Y.; Wang, Y.; Zhu, D. Evolution of Metallic Cardiovascular Stent Materials: A Comparative Study Among Stainless Steel, Magnesium and Zinc. Biomaterials 2020, 230, 119641. [Google Scholar] [CrossRef]
- Zhang, Z.-Q.; Yang, Y.-X.; Li, J.-A.; Zeng, R.-C.; Guan, S.-K. Advances in Coatings on Magnesium Alloys for Cardiovascular Stents—A Review. Bioact. Mater. 2021, 6, 4729–4757. [Google Scholar] [CrossRef]
- Scafa Udriște, A.; Niculescu, A.-G.; Grumezescu, A.M.; Bădilă, E. Cardiovascular Stents: A Review of Past, Current, and Emerging Devices. Materials 2021, 14, 2498. [Google Scholar] [CrossRef] [PubMed]
Materials | Density (g cm3) | Compressive Strength (MPa) | Tensile Strength (MPa) | Elastic Modulus (GPa) | Reference |
---|---|---|---|---|---|
Magnesium | |||||
Pure Magnesium | 1.74 | 20–115 | 90–190 | 45 | [43] |
AZ31 Alloy (Extruded) | 1.78 | 83–97 | 241–260 | 45 | [43] |
AZ91D Alloy (Die Cast) | 1.81 | 160 | 230 | 45 | [43] |
Alternative Metals | |||||
Aluminum Alloys | 2.7 | - | 170–560 | 70 | [44,45] |
Stainless Steel | 7.9–8.1 | - | 480–620 | 189–205 | [43,46] |
Cobalt-Chrome Alloys | 7.8–9.2 | - | 450–960 | 195–230 | [43,46] |
Titanium Alloys | 4.4–4.5 | - | 550–985 | 100–125 | [43,46] |
Biological Tissues | |||||
Arterial Wall | - | - | 0.5–1.72 | 0.001 | [43,47] |
Skin | - | - | 2.5–16 | 0.006–0.04 | [47] |
Cancellous Bone | 1–1.4 | 1.5–9.3 | 1.5–38 | 0.01–1.57 | [43,47] |
Cortical Bone | 1.8–2 | 160 Transverse 240 Longitudinal | 35 Transverse 283 Longitudinal | 5–23 | [43,47,48] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, J.; Ramakrishna, S. Applications of Magnesium and Its Alloys: A Review. Appl. Sci. 2021, 11, 6861. https://doi.org/10.3390/app11156861
Tan J, Ramakrishna S. Applications of Magnesium and Its Alloys: A Review. Applied Sciences. 2021; 11(15):6861. https://doi.org/10.3390/app11156861
Chicago/Turabian StyleTan, Jovan, and Seeram Ramakrishna. 2021. "Applications of Magnesium and Its Alloys: A Review" Applied Sciences 11, no. 15: 6861. https://doi.org/10.3390/app11156861
APA StyleTan, J., & Ramakrishna, S. (2021). Applications of Magnesium and Its Alloys: A Review. Applied Sciences, 11(15), 6861. https://doi.org/10.3390/app11156861